Joint Head and Neck Radiotherapy-MRI Development Cooperative, Travis Salzillo, M. Alex Dresner, Ashley Way, Kareem Wahid, Brigid McDonald, Sam Mulder, Mohamed Naser, Renjie He, Yao Ding, Alison Yoder, Sara Ahmed, Kelsey Corrigan, Gohar Manzar, Lauren Andring, Chelsea Pinnix, R. Jason Stafford, Abdallah S. Mohamed, John Christodouleas, Jihong Wang, Clifton David Fuller
PurposeTo improve segmentation accuracy in head and neck cancer (HNC) radiotherapy treatment planning for the 1.5T hybrid magnetic resonance imaging/linear accelerator (MR-Linac), three-dimensional (3D), T2-weighted, fat-suppressed magnetic resonance imaging sequences were developed and optimized.ApproachAfter initial testing, spectral attenuated inversion recovery (SPAIR) was chosen as the fat suppression technique. Five candidate SPAIR sequences and a nonsuppressed, T2-weighted sequence were acquired for five HNC patients using a 1.5T MR-Linac. MR physicists identified persistent artifacts in two of the SPAIR sequences, so the remaining three SPAIR sequences were further analyzed. The gross primary tumor volume, metastatic lymph nodes, parotid glands, and pterygoid muscles were delineated using five segmentors. A robust image quality analysis platform was developed to objectively score the SPAIR sequences on the basis of qualitative and quantitative metrics.ResultsSequences were analyzed for the signal-to-noise ratio and the contrast-to-noise ratio and compared with fat and muscle, conspicuity, pairwise distance metrics, and segmentor assessments. In this analysis, the nonsuppressed sequence was inferior to each of the SPAIR sequences for the primary tumor, lymph nodes, and parotid glands, but it was superior for the pterygoid muscles. The SPAIR sequence that received the highest combined score among the analysis categories was recommended to Unity MR-Linac users for HNC radiotherapy treatment planning.ConclusionsOur study led to two developments: an optimized, 3D, T2-weighted, fat-suppressed sequence that can be disseminated to Unity MR-Linac users and a robust image quality analysis pathway that can be used to objectively score SPAIR sequences and can be customized and generalized to any image quality optimization protocol. Improved segmentation accuracy with the proposed SPAIR sequence will potentially lead to improved treatment outcomes and reduced toxicity for patients by maximizing the target coverage and minimizing the radiation exposure of organs at risk.
KEYWORDS: Magnetic resonance imaging, Signal to noise ratio, Motion models, Tissues, Convex optimization, Reconstruction algorithms, Image filtering, Data modeling
In many applications based on kinetic evaluation analysis and model fitting, quantitative mapping retrieved on data series from modalites such as MRI is completed on a voxel-by-voxel basis, where motion and low signal to noise ratio (SNR) would considerably degenerate the reliability of estimations. The coherence of image series in space and time can be used as prior knowledge to mitigate this occurrence. In this study, spatial and temporal higher-order total variations (HOTVs) are applied on a data series of MRI signal (e.g. dynamic contrast-enhanced (DCE) MRI and intravoxel incoherent motion (IVIM) MRI) to exploit the coherence of signal in space and time to minimize the variabilities caused by motion as well as improving quality of images with low SNR while retaining the physical details of original data properly. Simultaneously applying spatial and temporal HOTVs on images is non-trivial in implementation since it is a non-smooth optimization problem with multiple regularizers. Therefore, we use the proximal gradient method as well as a primal-dual split proximal mechanism to address the problem properly. In addition to increase the reliability of quantitative parametric map estimations, this preprocessing procedure can be included into many existing map estimation algorithms and pipelines effortlessly. We demonstrate our method on the parametric maps estimation for DCE MRI and IVIM MRI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.