We represent a design of a high brightness, fiber coupled diode laser module based on 16 single emitters at 915nm. The module can produce more than 150 Watts output power from a standard fiber with core diameter of 105μm and numerical aperture (NA) of 0.22. To achieve a high power and high brightness laser beam, the spatial beam combination and polarization beam combination are used to combine output of 16 single emitters into a single beam, and then an aspheric lens is used to couple the combined beam into an optical fiber. The simulation show that the total coupling efficiency is more than 95% and the highest brightness is estimated to be 11MW/ (cm2*sr).
This paper reports a study on the relationship between the combining efficiency and reflectivity of output coupler of diode array in spectral beam combining. The combining efficiency is analyzed theoretically by using principle of the resonator. The simulation shows that high reflectivity will lead to low combining efficiency, and low reflectivity may cause the failure of wavelength locking. With increasing of the reflectivity of the OC, the combining efficiency changes like a downward parabola which has a maximum value of ~10%. The experiments demonstrate that the highest efficiency is obtained at a reflectivity of 10%, and the experimental results agree well with the theoretical analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.