Integrated photonic computing promises revolutionary strides in processing power, energy efficiency, and speed, propelling us into an era of unprecedented computational capabilities. By harnessing the innate properties of light, such as high-speed propagation, inherent parallel processing capabilities, and the ability to carry vast amounts of information, photonic computing transcends the limitations of traditional electronic architectures. Furthermore, silicon photonic neural networks hold promise to transform artificial intelligence by enabling faster training and inference with significantly reduced power consumption. This potential leap in efficiency could revolutionize data centers, high-performance computing, and edge computing, minimizing environmental impact while expanding the boundaries of computational possibilities. The latest research on our silicon photonic platform for next-generation optical compute accelerators will be presented and discussed.
Increasing the throughput of a transmitter by scaling out to multiple wavelengths in high bandwidth density links, such as those found in data centers or high performance compute clusters, is beginning to gain traction for two reasons. First, increasing the data rate per wavelength by both increasing the baud rate (>50G) and by increasing the number of bits per symbol (PAM-4) consumes more power and increases latency, from having to use a powerful FEC. Second, a technological advantage, in achieving tight integration of lasers with silicon based photonics, has reduced laser coupling losses and tighter control on laser wavelengths, which in turn allows for greater utilization of the available optical bandwidth. In this talk, we will review our current and past efforts in realizing multi-wavelength laser sources heterogeneously integrated on silicon as a means to generate fully integrated transmitters with bandwidth capacity in excess of 1Tbps over 40 channels. We will also discuss some of the recent results from our MOSCAP microring modulators and Si-Ge/ quantum dot based avalanche photodetectors that enable a fully integrated heater-free compact transceiver. The estimated power consumption for the optical components in such a transmitter is around 1pJ/bit, which is roughly a 10x reduction compared to the state-of-the-art.
In this work, a dynamic metallic filamentary resistive switch (MFRS) is used to quench the avalanche in a single photon avalanche photodiode (SPAD). The experimental results and simulations are consistent with an interpretation that, the MFRS is in a high resistance state when the avalanche occurs. This enables the quenching of the avalanche sufficiently within a short time. This increases the voltage drop across the MFRS, which switches the MFRS to its low resistance on-state and the recharging process is greatly accelerated because of the lowered R-C time constant. This leads to a sharp avalanche pulse shape and a fast detection speed.
In this work, a novel smart quenching approach for a Geiger-mode single-photon avalanche diode is proposed. The avalanche photodiode is connected in series with a metallic filamentary resistive switch (MFRS). The hysteresis behavior of the MFRS makes it suitable to operate as a quenching resistor. Initially the MFRS is in the off state and it quenches an avalanche event triggered by an incident photon. After quenching, the MFRS switches to the low-resistance on-state, which reduces the R-C time constant of the recharging process. A sharp avalanche pulse shape, continuous detection, and fast detection speed have been achieved. Our observations are consistent with a model where the MFRS adaptively changes its resistance state from high to low during quenching and recharging.
KEYWORDS: Systems modeling, Avalanche photodetectors, Avalanche photodiodes, Telecommunications, Monte Carlo methods, Instrument modeling, Internet, Photonic devices, Electronic components, Sensing systems
Some III-V digital alloy avalanche photodiodes demonstrate very low excess noise making them suitable for single photon detection applications. This behavior is attributed to the presence of minigaps in the valence band and high hole effective mass which reduce hole impact ionization. In this work, we present a physics based SPICE compatible compact model for these low noise avalanche photodiodes built from parameters extracted from Environment-Dependent Tight Binding model, that is calibrated to ab-initio Density Functional Theory, and Monte Carlo methods. Using this approach, we can accurately capture the physical characteristics of APDs in integrated photonics circuit simulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.