KEYWORDS: Optoelectronics, Feedback loops, Radar, Signal processing, Modulators, Linear filtering, Radar signal processing, Neural networks, Detection and tracking algorithms, Data processing
As an improvement of the traditional recurrent neural networks (RNN), the reservoir computing (RC) only needs to train one output connection weight matrix linearly, which greatly reduces the number of machine learning network calculations. The optoelectronic RC can be realized with a delay feedback loop composed of optical and electrical devices. It has the advantages of lower power consumption and faster speed than the all-electric RC scheme. At the same time, it is easier to be controlled than the all-optical RC scheme. In this paper, we propose to employ the optoelectronic RC to process radar signals to distinguish different persons in the indoor environment. The radar signal required for the simulation is referred from the IDRad data set, which contains the echo signals of the frequency modulated continuous wave (FMCW) radar, and five persons of different ages are free to move around in the room, which is close to the real scene. First, the echo signal is processed and the micro-Doppler features are extracted, and each frame corresponds to a row vector. Then, this vector is used as the input signal of the optoelectronic RC. We numerically studied the impact of parameters such as the size of the RC and the regularization coefficient in the system. Finally, the classification accuracy of five targets reaches 87%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.