In virtual reality (VR) and augmented reality (AR) display, the vergence-accommodation conflict (VAC) is a significant issue. Thus, true-3D display technologies has been proposed to solve the VAC problem. Integral imaging (II) display, one of the most critical true-3D display technologies, has received increasing research recently. Significantly, anachromatic metalens array has realized a broadband metalens-array-based II (meta-II). However, the past micro-scale metalens arrays were incompatible with commercial micro-displays. Additionally, the elemental image array(EIA)rendering is slow. These device and algorithm problems prevent meta-II from being used for practical video-rate near-eye displays (NEDs). This research demonstrates a II-based NED combining a commercial micro-display and a metalens array. We make efforts in the hardware and software to solve the bottlenecks of video-rate metalens array II-based NED. The large-area nanoimprint technology fabricates the metalens array, and a novel real-time rendering algorithm is proposed to generate the EIA. We also build a see-through prototype based on our meta-II NED, demonstrating the effect of depth of field in AR, and the 3D parallax effect on the real mode. This work verifies the feasibility of nanoimprint technology for mass preparation of metalens samples, explores the potential of video-rate meta-II displays, which we can be applied in the fields of VR/AR and 3D display.
In this presentation, we briefly review the development of optical metalenses from the single metalens to the metalens array and to the metalens systems, especially focusing on the progress of silicon nitride metalenses. We then show the optical properties of silicon nitride films with different refractive index in our lab. With such silicon nitride films, we introduce our researches on the broadband achromatic metalens array, and the microscope meta-objectives with cascade metalenses, showing the visible imaging applications on noncoherent 3D integral imaging and high-resolution biological imaging.
Chromatic dispersion represents the wavelength-dependent behavior of optical devices and limits their operation bandwidth. Due to the material dispersion restriction of refractive elements, dispersion engineering remains a challenge to imaging technology and optical communication. Recently, metalens offers an attractive approach to engineer the dispersion by introducing the additional degree of freedom with only a single layer of nanostructures. Here, we propose a method to design the dual-wavelength metalenses with controllable dispersion characteristic in transmission mode in the visible region. Three kinds of polarization-independent metalenses are demonstrated, including those with zero dispersion, positive axial dispersion, and negative axial dispersion. All the metalenses show high resolution with nearly diffraction-limited focusing. Our findings may provide an alternative way to design dual-wavelength functional devices in the fields of optical information processing, imaging technologies and complex fluorescence techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.