The rapid development of artificial intelligence and big data has increasingly heightened the demands on data center interconnection technologies. Terahertz wireless communication technology, which does not rely on physical cables, offers important interconnection form for data center. Our study introduces a new terahertz wireless interconnect system based on on-chip optical frequency comb for data center. It discusses the impact of waveguide second order dispersion on the generation of on-chip optical frequency combs and terahertz wireless interconnect performance in a data center environment. Simulation results show that using PAM4 encoding, the system based on an on-chip optical frequency comb can achieve a transmission rate of 120Gbps with bit error rate below 0.001 for data center terahertz wireless interconnects. This study lays a basic foundation for the future application of wireless terahertz interconnect in data center.
We design and simulate planar antenna structure on the high- resistivity silicon substrate(ρ=1000Ω·cm) for the Nb5N6 micro- bolometer at the frequency range from 0.265 THz to 0.365 THz by CST Studio Suite. We have obtained the center frequency of the antenna at 0.3 THz by optimizing parameters of the antenna structure and the antenna has the very good radiation directivity. And the maximum directivity of the antenna is around 8.634 dBi at 0.3THz. The measured best voltage response of the Nb5N6 micro-bolometer detector is at 0.307 THz. The measured response frequency and the simulated S-parameter are in substantial agreement.
We present a readout circuit for 1 × 64 Nb5N6 microbolometer array detector. The intrinsic average responsivity of the detectors in the array is 650 V/W, and the corresponding noise equivalent power (NEP) is 17 pW/√Hz. Due to the low noise of the detector, we design a low noise readout circuit with 64 channels. The readout integrated circuit (ROIC) is fabricated under CMOS process with 0.18μm design rule, which has built-in bias and adjustable numerical-controlled output current. Differential structure is used for each pixel to boost capacity of resisting disturbance. A multiplexer and the second stage amplifier is followed after the ROIC. It is shown that the ROIC achieves an average gain of ~47dB and a voltage noise spectral density of ~9.34nV/√Hz at 10KHz. The performance of this readout circuit nearly fulfills the requirements for THz array detector. This readout circuit is fit for the detector, which indicates a good way to develop efficient and low-cost THz detector system.
In order to effectively improve the coupling efficiency of terahertz (THz) detectors, we design a grating-coupled structure on the high-resistivity silicon substrate for 0.2 THz to 0.35 THz band to enhance the ability of coupling terahertz signals. We simulated the electric field distribution of the grating-coupled structure in surface and inside by using the finite difference time domain (FDTD) method. The electric field in the central area of the silicon surface can be enhanced more than 4 times compared with the non-structure silicon substrate. We also simulated the Fabry-Perot cavity in the frequency range from 0.2 THz to 0.35 THz, and the electric field in the central area of the silicon surface can be improved one time compared with the non-structure silicon substrate. In addition, the electric field distribution on the silicon surface can be changed by adjusting parameters of the grating-coupled structure. When the period of the grating is 560 μm, the width of the gold is 187 μm, and the thickness of the silicon substrate is 720 μm, a 4.7 times electric field could be achieved compared with the non-structure silicon substrate at 0.27 THz and around. So, the simulation result shows that the grating-coupled structure has an obvious advantage compared with the Fabry-Perot cavity at THz coupling efficiency.
Diffractive silicon microlens with ten staircases is designed and analyzed in this paper. The power distribution at the focal plane of the microlens is calculated and frequency dependence and focusing performance of the microlens is also evaluated by a FDTD method The simulation results show the diffractive lens has a good ability of focusing at 0.3 THz and around, and thus it can improve the coupling efficiency of the incident power into the Nb5N6 microbolometers. Development of a focal plane array (FPA) using such devices as detectors is favorable since diffractive microlens array has many advantages, such as light weight, low absorption loss, high resolution, and the most important point is that the microlens array can be easily integrated by ready mass production using standard micro-fabrication techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.