PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The soft x-ray spectrometer (SXS) instrument that flew on the Astro-H observatory was designed to perform imaging and spectroscopy of x-rays in the energy range of 0.2 to 13 keV with a resolution requirement of 7 eV or better. This was accomplished using a 6 × 6 array of x-ray microcalorimeters cooled to an operating temperature of 50 mK by an adiabatic demagnetization refrigerator (ADR). The ADR consisted of three stages to operate using either a 1.2 K superfluid helium bath or a 4.5 K Joule–Thomson (JT) cryocooler as its heat sink. The design was based on the following operating strategy. After launch, while liquid helium was present (cryogen mode), two of the ADR’s stages would be used to single-shot cool the detectors, using the helium as a heat sink. When the helium was eventually depleted (cryogen-free mode), all three ADR stages would be used to continuously cool the helium tank to about 1.5 K and to single-shot cool the detectors (to 50 mK), using the JT cryocooler as a heat sink. The Astro-H observatory, renamed Hitomi after its successful launch in February 2016, carried ∼36 L of helium into orbit. Based on measurements during ground testing, the average heat load on the helium was projected to be 0.66 mW, giving a lifetime of more than 4 years. On day 5, the helium had cooled to <1.4 K and ADR operation began, successfully cooling the detector array to 50 mK. The ADR’s hold time steadily increased to 48 h as the helium cooled to a temperature of 1.12 K. As the commissioning phase progressed, the ADR was recycled (requiring ∼45 min) periodically, either in preparation for science observations or whenever the 50 mK stage approached the end of its hold time. In total, 18 cycles were completed by the time an attitude control anomaly led to an unrecoverable failure of the satellite on day 38. This paper presents the design, operation, and on-orbit performance of the ADR in cryogen mode as the foreshortened mission did not provide an opportunity to test cryogen-free mode.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The soft x-ray spectrometer (SXS) on-board Astro-H presents to the science community unprecedented capability (<7 eV full width half max at 6 keV) for high-resolution spectral measurements in the range of 0.5 to 12 keV to study extended celestial sources. At the heart of the SXS is the x-ray calorimeter spectrometer (XCS) where detectors (calorimeter array and anticoincidence detector) operate at 50 mK, the bias circuit operates at nominal 1.3 K, and the first stage amplifiers operate at 130 K, all within a nominal 20-cm envelope. The design of the detector assembly (DA) in the XCS originates from the Astro-E x-ray spectrometer (XRS) and lessons learned from Astro-E and Suzaku. After the production of our engineering model, additional changes were made to improve our flight assembly process for better reliability and overall performance. We present the final design and implementation of the flight DA, compare its parameters and performance with Suzaku’s XRS, and list susceptibilities to other subsystems as well as our lessons learned.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Canadian Astro-H Metrology System (CAMS) on the Hitomi x-ray satellite is a laser alignment system that measures the lateral displacement (X/Y) of the extensible optical bench (EOB) along the optical axis of the hard x-ray telescopes (HXTs). The CAMS consists of two identical units that together can be used to discern translation and rotation of the deployable element along the axis. This paper presents the results of in-flight usage of the CAMS during deployment of the EOB and during two observations (Crab and G21.5-0.9) with the HXTs. The CAMS was extremely important during the deployment operation by providing real-time positioning information of the EOB with micrometer-scale resolution. We show how the CAMS improves data quality coming from the hard x-ray imagers. Moreover, we demonstrate that a metrology system is even more important as the angular resolution of the telescope increases. Such a metrology system will be an indispensable tool for future high-resolution x-ray imaging missions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution nondispersive spectroscopy in the soft x-ray waveband (0.3 to 12 keV). We present the suite of ground calibration measurements acquired from 2012 to 2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line-spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Soft X-ray Spectrometer onboard the Astro-H (Hitomi) orbiting x-ray observatory featured an array of 36 silicon thermistor x-ray calorimeters optimized to perform high spectral resolution x-ray imaging spectroscopy of astrophysical sources in the 0.3- to 12-keV band. Extensive preflight calibration measurements are the basis for our modeling of the pulse height–energy relation and energy resolution for each pixel and event grade, telescope collecting area, detector efficiency, and pulse arrival time. Because of the early termination of mission operations, we needed to extract the maximum information from observations performed only days into the mission when the onboard calibration sources had not yet been commissioned and the dewar was still coming into thermal equilibrium, so our technique for reconstructing the per-pixel time-dependent pulse height–energy relation had to be modified. The gain scale was reconstructed using a combination of an absolute energy scale calibration at a single time using a fiducial from an onboard radioactive source and calibration of a dominant time-dependent gain drift component using a dedicated calibration pixel, as well as a residual time-dependent variation using spectra from the Perseus cluster of galaxies. The energy resolution was also measured using the onboard radioactive sources. It is consistent with instrument-level measurements accounting for the modest increase in noise due to spacecraft systems interference. We use observations of two pulsar wind nebulae to validate our models of the telescope area and detector efficiency and to derive a more accurate value for the thickness of the gate-valve Be window, which had not been opened by the time mission operations ceased. We use observations of the Crab nebula to refine the pixel-to-pixel timing and validate the absolute timing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Soft X-ray Spectrometer (SXS) is the first space-based instrument to implement operational redundancy of a sub-Kelvin cooling system. Its cooling system includes a superfluid helium cryostat and five cryocoolers, provided by Japan Aerospace Exploration Agency, and three adiabatic demagnetization refrigerators (ADRs) with four active heat switches, provided by NASA. These elements are configured in one of two ways to control the heat sink of the x-ray microcalorimeter detectors at 50 mK. The “helium mode,” the simpler of the two modes, is used while liquid helium is present and uses all five cryocoolers and two ADRs. The first two ADR stages operate together and reject their heat directly to the liquid at ∼1.1 K. In the “cryogen-free mode,” for operation after the helium is depleted, the first stage ADR operation is unchanged, the second stage is repurposed to control the empty helium tank at ∼1.5 K, and the third stage transfers heat from the 1.5-K stage to the 4.5-K interface of the Joule–Thomson cooler. The development and verification details of this capability are presented within this paper and offer valuable insights into the challenges, successes, and lessons that can benefit other missions, particularly those employing cryogen-free or hybrid cooling systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Hard X-ray Imager (HXI) onboard Hitomi (ASTRO-H) is an imaging spectrometer covering hard x-ray energies of 5 to 80 keV. Combined with the Hard X-ray Telescope, it enables imaging spectroscopy with an angular resolution of 1′.7 half-power diameter, in a field of view of 9′ × 9′. The main imager is composed of four layers of Si detectors and one layer of CdTe detector, stacked to cover a wide energy band up to 80 keV, surrounded by an active shield made of Bi4Ge3O12 scintillator to reduce the background. The HXI started observations 12 days before the Hitomi loss and successfully obtained data from G21.5–0.9, Crab, and blank sky. Utilizing these data, we calibrate the detector response and study properties of in-orbit background. The observed Crab spectra agree well with a powerlaw model convolved with the detector response, within 5% accuracy. We find that albedo electrons in specified orbit strongly affect the background of the Si top layer and establish a screening method to reduce it. The background level over the full field of view after all the processing and screening is as low as the preflight requirement of 1 − 3 × 10−4 counts s−1 cm−2 keV−1.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The hard x-ray imaging spectroscopy system of “Hitomi” x-ray observatory is composed of two sets of hard x-ray imagers (HXI) coupled with hard x-ray telescopes (HXT). With a 12-m focal length, the system provides fine (1 ′ . 7 half-power diameter) imaging spectroscopy covering about 5 to 80 keV. The HXI sensor consists of a camera, which is composed of four layers of Si and one layer of CdTe semiconductor imagers, and an active shield composed of nine Bi4Ge3O12 scintillators to provide low background. The two HXIs started observation on March 8 and 14, 2016 and were operational until 26 March. Using a Crab observation, 5 to 80 keV energy coverage and good detection efficiency were confirmed. The detector background level of 1 to 3 × 10 − 4 counts s − 1 keV − 1 cm − 2 (in detector geometrical area) at 5 to 80 keV was achieved, by cutting the high-background time-intervals, adopting sophisticated energy-dependent imager layer selection, and baffling of the cosmic x-ray background and active-shielding. This level is among the lowest of detectors working in this energy band. By comparing the effective area and the background, it was shown that the HXI had a sensitivity that is same to that of NuSTAR for point sources and 3 to 4 times better for largely extended diffuse sources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Hitomi (ASTRO-H) was the sixth Japanese x-ray satellite that carried instruments with exquisite energy resolution of <7 eV and broad energy coverage of 0.3 to 600 keV. The Soft Gamma-ray Detector (SGD) was the Hitomi instrument that observed the highest energy band (60 to 600 keV). The SGD design achieves a low background level by combining active shields and Compton cameras where Compton kinematics is utilized to reject backgrounds coming from outside of the field of view. A compact and highly efficient Compton camera is realized using a combination of silicon and cadmium telluride semiconductor sensors with a good energy resolution. Compton kinematics also carries information for gamma-ray polarization, making the SGD an excellent polarimeter. Following several years of development, the satellite was successfully launched on February 17, 2016. After proper functionality of the SGD components were verified, the nominal observation mode was initiated on March 24, 2016. The SGD observed the Crab Nebula for approximately two hours before the spacecraft ceased to function on March 26, 2016. We present concepts of the SGD design followed by detailed description of the instrument and its performance measured on ground and in orbit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Wide Aperture Exoplanet Telescope (WAET) is a ground-based optical telescope layout in which one dimension of a filled aperture can be made very large (beyond 100 m) at low cost and complexity. With an unusual beam path but otherwise conventional optics, we obtain a fully steerable telescope on a low-rise mount with a fixed-gravity vector on key components. Numerous design considerations and scaling laws suggest that WAET can be far less expensive than other giant segmented mirror telescopes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Developed according to quasi-Ritchey–Chretien, the AZT-33VM telescope is designed for up to 2.8-deg wide-field survey observations; it has inner position of the focal plane and the prefocal lens corrector installed at 0.12 of the equivalent focal length from the image plane. Classic methods to calculate direct stray light protection system in two-mirror systems allow us to find the optimal configuration of the baffles providing minimum obscuration of the entrance pupil. The design of stray light protection baffles for a future large rectangular detector 260 × 124 mm was proposed. The baffles were calculated from axisymmetric condition in a plane passing through the system centerline and a point of the detector perimeter. Using the ray-tracing method, we simulated optimized baffles for a rectangular detector. We assessed obscuration of the entrance pupil with an optimal design baffle as well their advantages for the modulation transfer function.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Imaging, Spectroscopic, High-Contrast, and Interferometric Instrumentation
Spatial heterodyne spectroscopy (SHS) is an interferometric technique similar to the Fourier transform spectroscopy with heritage from the Michelson interferometer. An imaging detector is used at the output of an SHS to record the spatially heterodyned interference pattern. The spectrum of the source is obtained by Fourier transforming the recorded interferogram. The merits of the SHS—its design, including the absence of moving parts, compactness, high throughput, high SNR, and instantaneous spectral measurements—make it suitable for space as well as for ground observatories. The small bandwidth limitation of the SHS can be overcome by building it in tunable configuration [tunable spatial heterodyne spectrometer (TSHS)]. We describe the design, development, and simulation of a TSHS in refractive configuration suitable for optical wavelength regime. Here we use a beam splitter to split the incoming light compared with all-reflective SHS where a reflective grating does the beam splitting. Hence, the alignment of this instrument is simple compared with all-reflective SHS where a fold mirror and a roof mirror are used to combine the beam. This instrument is intended to study faint diffuse extended celestial objects with a resolving power above 20,000 and can cover a wavelength range from 350 to 700 nm by tuning. It is compact and rugged compared with other instruments having similar configurations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We discuss some of the unique details of the operation and behavior of Leonardo Selex avalanche photodiode for HgCdTe infrared array (SAPHIRA) detectors, particularly in relation to their usage for adaptive optics wavefront sensing. SAPHIRA detectors are 320 × 256 at 24-μm pixel HgCdTe linear avalanche photodiode arrays and are sensitive to 0.8- to 2.5-μm light. SAPHIRA arrays permit global or line-by-line resets of the entire detector or just subarrays of it, and the order in which pixels are reset and read enables several readout schemes. We discuss three readout modes; the benefits, drawbacks, and noise sources of each; and the observational modes for which each is optimal. We describe the ability of the detector to read subarrays for increased frame rates and, finally, clarify the differences between the avalanche gain (which is user-adjustable) and the charge gain (which is not).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Data and Instrumentation Analysis Techniques and Methods
We present KAFE—the Key-analysis Automated FITS-images Explorer. KAFE is a web-based FITS image postprocessing analysis tool designed to be applicable in the radio to sub-mm wavelength domain. KAFE was developed to complement selected FITS files with metadata based on a uniform image analysis approach as well as to provide advanced image diagnostic plots. It is ideally suited for data mining purposes and multiwavelength/multi-instrument data samples that require uniform data diagnostic criteria. We present the code structure and interface, the keyword definitions, the products generated for selected users’ science cases, and application examples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
When combining remote sensing data from multiple instruments or multiple imaging channels, differences in point spread function (PSF) can lead to systematic error. If the PSFs are not well known, then it is difficult to determine which differences in the image data are meaningful for the object being observed and which are artifacts of PSF. Direct PSF measurements can be problematic. For example, in a sounding rocket payload, launch vibrations and acceleration, subsequent operations in micro gravity, and the impact on return to Earth may all affect PSFs. We have developed a blind method to equalize the PSFs of three distinct instrument channels, as found in the Multi-Order Solar Extreme Ultraviolet Spectrograph (MOSES). To validate our technique, we generate three synthetic images with three different PSFs, with some spectrally interesting features. Thence, we demonstrate the successful removal of PSF-induced artifacts is possible, with the genuine spectral features left intact. We also perform blind PSF equalizations on three copies of the same solar image, but with differing PSFs, after applying independent noise to each. The results accurately reproduce corrections performed in the absence of noise, with full knowledge of the PSFs. Finally, we apply PSF equalization to solar images obtained in the 2006 MOSES flight and demonstrate the removal of artifacts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Wavefront Sensing, Active and Adaptive Optics, and Control Systems
We introduce a discrete-layout bimorph disk elements piezoelectric deformable mirror (DBDEPDM), driven by the circular flexural-mode piezoelectric actuators. We formulated an electromechanical model for analyzing the performance of the new deformable mirror. As a numerical example, a 21-actuators DBDEPDM with an aperture of 165 mm was modeled. The presented results demonstrate that the DBDEPDM has a stroke larger than 10 μm and the resonance frequency is 4.456 kHz. Compared with the conventional piezoelectric deformable mirrors, the DBDEPDM has a larger stroke, higher resonance frequency, and provides higher spatial resolution due to the circular shape of its actuators. Moreover, numerical simulations of influence functions on the model are provided.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.