This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Both glass and crystalline Yb-Er doped active media are commonly available. Crystalline media present higher thermal conductivity and hardness, which allows for higher pumping intensities. However, glass laser media present longer laser upper-state lifetime and 99% Yb-Er transfer efficiency make phosphate glasses the typically preferred host for this type of application. In addition to this, passively q-switched microchip lasers with Yb-Er doped phosphate glass have been reported to output >100μJ pulses while their crystalline host counterparts achieve a few tens of μJ at best.
Two different types of rate equation models have been found: microscopic quantities based models and macroscopic quantities based models. Based on the works of Zolotovskaya et al. and Spühler et al, we have developed a computer model that further exploits the equivalence between the two types of approaches. The simulation studies, using commercial available components allowed us to design a compact laser emitting 80μJ pulses with up to 30kW peak power and 1 to 2 ns pulse width.
We considered EAT14 Yb-Er doped glass as active medium and Co2+:MgAl2O4 as saturable absorber. The active medium is pumped by a 975nm semiconductor laser focused into a 200μm spot. Measurements on an experimental test bench to validate the numerical model were carried out. Several different combinations of, saturable absorber length and output coupling were experimented.
View contact details
No SPIE Account? Create one