The Nancy Grace Roman Space Telescope (“Roman”) was prioritized by the 2010 Decadal Survey in Astronomy & Astrophysics and is NASA’s next astrophysics flagship observatory. Launching no earlier than 2026, it will conduct several wide field and time domain surveys, as well as conduct an exoplanet census. Roman’s large field of view, agile survey capabilities, and excellent stability enable these objectives, yet present unique engineering and test challenges. Roman comprises a Spacecraft and the Integrated Payload Assembly (IPA), the latter of which includes the Optical Telescope Assembly (OTA), the primary science Wide Field Instrument, a technology demonstration Coronagraph Instrument, and the Instrument Carrier, which meters the OTA to each instrument. The Spacecraft supports the IPA and includes the Bus, Solar Array Sun Shield, Outer Barrel Assembly, and Deployable Aperture Cover. It provides all required power, attitude control, communications, data storage, and stable thermal control functions as well as shading and straylight protection across the entire field of regard. This paper presents the Observatory as it begins integration and test, as well as describes key test and verification activities.
The Roman Space Telescope Grism and Prism assemblies will allow the wide-field instrument (WFI) to perform slitless, multi-object spectroscopy across the complete field of view. These optical elements play a critical role in the High Latitude Wide Area and High Latitude Time Domain Surveys, which are designed to produce robust spectroscopic redshifts for millions of objects over the mission lifetime. To facilitate the characterization of these assemblies, a dedicated test bed was designed and utilized to perform a wide variety of spectroscopic measurements over the full range of operational wavelengths and field angles. Characterized features include, but are not limited to dispersion magnitude, dispersion clocking, encircled energy, total throughput, and bandpass edges. We present the results of this experimental campaign in which the Grism and Prism assemblies met or exceeded many of their design requirements and discuss measurement limitations.
The Nancy Grace Roman Space Telescope (“Roman”) was prioritized by the 2010 Decadal Survey in Astronomy & Astrophysics and is NASA’s next flagship observatory. Launching no earlier than 2026, Roman will explore the nature of dark energy, as well as expand the census of exoplanets in our galaxy via microlensing. Roman will also demonstrate key technology needed to image and spectrally characterize extra-solar planets. Roman’s large field of view, agile survey capabilities, and excellent stability enable these scientific objectives, yet present unique challenges for the design, test, and verification of its optical system. The Roman optical system comprises an optical telescope assembly (OTA) and two instruments: the primary science wide-field instrument (WFI) and a technology demonstration coronagraph instrument (CGI), and the instrument carrier (IC), which meters the OTA to each instrument. This paper presents a status of the optical system hardware as it begins integration and test (I&T), as well as describes key optical test, alignment, and verification activities as part of the I&T program.
The OTA for the Nancy Grace Roman Space Telescope includes the primary mirror, secondary mirror, and aft optics for guiding light into the Wide Field Instrument and the Coronagraph Instrument. The telescope is taking shape as the tested optical mirror assemblies are integrated. The assemblies have been thermal cycled to the cold temperatures for infrared operation, load tested to launch loads, vibration tested, and optically tested. Testing included launch-level vibration testing of the 2.4-meter light-weighted primary mirror assembly. In addition, the telescope control electronics (TCE) box has been fully assembled and the environmental testing of the TCE is progressing. Pictures and descriptions of the integration and test progress are provided, along with performance results measured at these levels of assemblies. Planning and test equipment preparation for the telescope thermal vacuum testing continues including plans to take advantage of the large dynamic range available with focus diversity phase retrieval and a Shack-Hartmann wavefront sensor for the gravity-sagged primary mirror.
The Wide-Field instrument (WFI) for the Roman Space Telescope (RST) features an imaging camera that comprises the Wide-Field Channel (WFC) with several bandpass filters, a spectroscopic dispersion unit called the Grism, and a Prism Assembly (PA), which took the place of the descoped Integral-Field Channel (IFC) assembly. The PA system consists of two prism elements made from S-TIH1 glass (P1) and CaF2 substrate (P2) that together will provide slitless low resolution spectroscopy with a spectral resolution R < 70 at all wavelengths, and R < 170 for wavelengths λ < 0.8 μm, across the full field. One key feature of the P1 element is the application of a bandpass coating that operates in the 0.75-1.8 μm spectral region. The extension of the bandpass towards short wavelengths greatly enhances the capabilities of RST for studies of stellar populations that provides additional means of testing in supernova studies. We have used spectroscopic techniques such as a double-beam monochromator and Fourier Transform InfraRed (FTIR) spectroscopy to characterize the spectral performance of the bandpass coatings of the P1 element. The coating technology used to produce these bandpass optical coatings has been demonstrated in the successful mission of the Mars Perseverance Rover in February of 2021.
The Global Ecosystem Dynamics Investigation (GEDI) instrument was designed, built, and tested in-house at NASA’s Goddard Space Flight Center and launched to the International Space Station (ISS) on December 5, 2018. GEDI is a multibeam waveform LiDAR (light detection and ranging) designed to measure the Earth’s global tree height and canopy density using 8 laser beam ground tracks separated by roughly 600 meters. Given the ground coverage required and the 2 year mission duration, a unique optical design solution was developed. GEDI generates 8 ground sampling tracks from 3 transmitter systems viewed by a single receiver telescope, all while maximizing system optical efficiency and transmitter to receiver boresight alignment margin. The GEDI optical design, key optical components, and system level integration and testing are presented here. GEDI began 2 years of science operations in March 2019 and so far, it is meeting all of its key optical performance requirements and is returning outstanding science.
NASA’s Global Ecosystem Dynamics Investigation (GEDI) instrument was launched Dec. 5, 2018, and installed on the International Space Station 419 km from Earth. The GEDI is a Light Detection and Ranging (LIDAR) instrument; measuring the time of flight of transmitted laser beams to the Earth and back to determine altitude for geospatial mapping of forest canopy heights. The need for very dense cross track sampling for slope measurements of canopy height is accomplished by using three individual laser transmitter systems, where each beam is split into two beams by a birefringent crystal. Furthermore, one transmitter is equipped with a diffractive optical element splitting the two beams into four, for a total of 8 beams. The beams are reflected off of the features and imaged by an 800 mm diameter Receiver Telescope Assembly, composed of a Ritchey-Chrétien telescope, a refractive aft optics assembly and focal plane array which collects and focuses the light from the 8 probe beams into the 8 science fibers, each with a field of view on the Earth subtending 300 μrad. The dense cross-track sampling mandated a custom designed dual-fiber interface. The science fibers had to be aligned to the nominal, projected laser spots. The alignment was highly dependent on optimization and co-positioning of the fibers pair-wise due to mechanical constraints. This paper presents the end-to-end alignment and metrology of the full optical system from transmitter elements through receiver telescope, aft-optics, focal plane and receiver fibers performed at NASA Goddard Space Flight Center.
The sole instrument on NASA’s ICESat-2 spacecraft shown in Figure 1 will be the Advanced Topographic Laser Altimeter System (ATLAS)1. The ATLAS is a Light Detection and Ranging (LIDAR) instrument; it measures the time of flight of the six transmitted laser beams to the Earth and back to determine altitude for geospatial mapping of global ice. The ATLAS laser beam is split into 6 main beams by a Diffractive Optical Element (DOE) that are reflected off of the earth and imaged by an 800 mm diameter Receiver Telescope Assembly (RTA). The RTA is composed of a 2-mirror telescope and Aft Optics Assembly (AOA) that collects and focuses the light from the 6 probe beams into 6 science fibers. Each fiber optic has a field of view on the earth that subtends 83 micro Radians. The light collected by each fiber is detected by a photomultiplier and timing related to a master clock to determine time of flight and therefore distance. The collection of the light from the 6 laser spots projected to the ground allows for dense cross track sampling to provide for slope measurements of ice fields. NASA LIDAR instruments typically utilize telescopes that are not diffraction limited since they function as a light collector rather than imaging function. The more challenging requirements of the ATLAS instrument require better performance of the telescope at the ¼ wave level to provide for improved sampling and signal to noise. NASA Goddard Space Flight Center (GSFC) contracted the build of the telescope to General Dynamics (GD). GD fabricated and tested the flight and flight spare telescope and then integrated the government supplied AOA for testing of the RTA before and after vibration qualification. The RTA was then delivered to GSFC for independent verification and testing over expected thermal vacuum conditions. The testing at GSFC included a measurement of the RTA wavefront error and encircled energy in several orientations to determine the expected zero gravity figure, encircled energy, back focal length and plate scale. In addition, the science fibers had to be aligned to within 10 micro Radians of the projected laser spots to provide adequate margin for operations on-orbit. This paper summarizes the independent testing and alignment of the fibers performed at the GSFC.
We describe the use of LIDAR, or "laser radar," (LR) as a fast, accurate, and non-contact tool for the
measurement of the radius of curvature (RoC) of large mirrors. We report the results of a demonstration of
this concept using a commercial laser radar system. We measured the RoC of a 1.4m x 1m spherical mirror
with a nominal RoC of 4.6m with a manufacturing tolerance of 4600mm +/- 6mm. The prescription of the
mirror is related to its role as ground support equipment used in the test of part of the James Webb Space
Telescope (JWST). The RoC of such a large mirror is not easily measured without contacting the surface.
From a position near the center of curvature of the mirror, the LIDAR scanned the mirror surface, sampling it
with 1 point per 3.5 cm2. The measurement consisted of 3983 points and lasted only a few minutes. The laser
radar uses the LIDAR signal to provide range, and encoder information from angular azimuth and elevation
rotation stages provide the spherical coordinates of a given point. A best-fit to a sphere of the measured points
was performed. The resulting RoC was within 20 ppm of the nominal RoC, also showing good agreement
with the results of a laser tracker-based, contact metrology. This paper also discusses parameters such as test
alignment, scan density, and optical surface type, as well as future possible application for full prescription
characterization of aspherical mirrors, including radius, conic, off-axis distance, and aperture.
The James Webb Space Telescope Integrated Science Instrument Module utilizes two fixtures to
align the Optical Telescope Element Simulator (OSIM) to the coordinate systems established on the
ISIM and the ISIM Test Platform (ITP). These fixtures contain targets which are visible to the OSIM
Alignment Diagnostics Module (ADM). Requirements on these fixtures must be met under ambient and
cryogenic conditions. This paper discusses the cryogenic metrology involving Laser Radar
measurements through a chamber window that will be used to link photogrammetry target measurements
used during ISIM structure cryogenic verification and the ADM targets, including evaluation of
distortion introduced from the window.
The James Webb Space Telescope (JWST) is a general astrophysics mission which consists of a 6.6m diameter,
segmented, deployable telescope for cryogenic IR space astronomy (~35K). The JWST Observatory architecture
includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four
science instruments (SI) including a Guider.
The alignment philosophy of ISIM is such that the cryogenic changes in the alignment of the SI interfaces are captured in
the ISIM alignment error budget. The SIs are aligned to the structure's coordinate system under ambient, clean room
conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled and temperature-induced
structural changes are concurrently measured with a photogrammetry metrology system to ensure they are within
requirements.
We compare the ISIM photogrammetry system performance to the ISIM metrology requirements and describe the
cryogenic data acquired to verify photogrammetry system level requirements, including measurement uncertainty. The
ISIM photogrammetry system is the baseline concept for future tests involving the Optical Telescope Element (OTE) and
Observatory level testing at Johnson Space Flight Center.
NASA's James Webb Space Telescope (JWST) will be a premier space science program for astrophysics following
launch scheduled for 2014. JWST will observe the early universe, with emphasis on the time period during which the
first stars and galaxies began to form. JWST has a 6.5 m diameter (25 square meters of collecting area), deployable,
active primary mirror operating at cryogenic temperatures.
The Spatially Phase Shifted Digital Speckle Pattern Interferometer (SPS-DSPI) is a speckle pattern interferometer in
which the four phase-shifted interferograms are captured simultaneously in a single image. Designed to measure thermal
distortions of large matte-surfaced structures for the James Webb Space Telescope (JWST) program, this metrology
instrument has been used in two major cryo-distortion tests. This report will describe how differences in the vibrational
motions of the test objects necessitated changes in basic algorithms. The authors also report operational upgrades,
quantification of uncertainty, and improvement of the software operability with a graphic interface. Results from the
tests of the JWST test structures are discussed as illustration.
Instantaneous phase shifting interferometry is key to successful development and testing of the large, deployable,
cryogenic telescope for the James Webb Space Telescope (JWST) mission. Two new interferometers have been
developed to meet the needs of the JWST program. Spatially Phase-Shifted Digital Speckle Pattern Interferometer (SPSDSPI)
was developed to verify structural deformations to nanometer level accuracy in large, deployable, lightweight,
precision structures such as the JWST telescope primary mirror backplane. Multi- wavelength interferometer was
developed to verify the performance of the segmented primary mirror at cryogenic temperatures.
This paper discusses application of SPS-DSPI for measuring structural deformations in large composite structures at
cryogenic temperatures. Additionally development of a multi-wavelength interferometer for verifying JWST OTE
primary mirror performance at cryogenic temperatures will be discussed.
KEYWORDS: James Webb Space Telescope, Interferometers, Cryogenics, Mirrors, Temperature metrology, Speckle pattern, Calibration, Composites, Space telescopes, Interferometry
The stability requirements for the James Webb Space Telescope (JWST) optical metering structure are driven by the
science objectives of the mission. This structure, JWST Optical Telescope Element (OTE) primary mirror backplane, has
to be stable over time at cryogenic temperatures. Successful development of the large, lightweight, deployable,
cryogenic metering structure requires verification of structural deformations to nanometer level accuracy in
representative test articles at cryogenic temperature. An instantaneous acquisition phase shifting speckle interferometer
was designed and built to support the development of JWST Optical Telescope Element (OTE) primary mirror
backplane. This paper discusses characterization of the Electronic Speckle Pattern Interferometer (SPS-DSPI) developed
for JWST to verify its capabilities to measure structural deformations in large composite structures at cryogenic
temperature. Interferometer performance during the Backplane Stability Test Article (BSTA) test that completed the
TRL-6 (Technology Readiness Level-6) demonstration of Large Precision Cryogenic Structures will also be discussed.
KEYWORDS: Curium, James Webb Space Telescope, Cryogenics, Composites, Temperature metrology, Space telescopes, Mirrors, Manufacturing, Metrology, Analytical research
The need for JWST's metering structure to be stable over time while at cryogenic temperatures is derived from its
scientific objectives. The operational scenario planned for JWST provides for the optical system to be adjusted on
regular intervals based upon image quality measurements. There can only be a limited amount of optical
degradation between the optical system adjustments in order to meet the scientific objectives. As the JWST primary
mirror is segmented, the structure supporting the mirror segments must be very stable to preclude degradation of the
optical quality. The design, development and, ultimately, the verification of that supporting structure's stability rely
on the availability of analysis tools that are credibly capable of accurately estimating the response of a large
structure in cryogenic environments to the nanometer level. Validating the accuracy of the analysis tools was a
significant technology demonstration accomplishment. As the culmination of a series of development efforts, a
thermal stability test was performed on the Backplane Stability Test Article (BSTA), demonstrating TRL-6 status
for the design, analysis, and testing of Large Precision Cryogenic Structures. This paper describes the incremental
development efforts and the test results that were generated as part of the BSTA testing and the associated TRL-6
demonstration.
KEYWORDS: Distortion, James Webb Space Telescope, Manufacturing, Magnetism, Temperature metrology, Composites, 3D modeling, Aluminum, Space telescopes, Metrology
The unprecedented stability requirements of JWST structures can only be conclusively
verified by a combination of analysis and ground test. Given the order of magnitude of the
expected motions of the backplane due to thermal distortion and the high level of confidence
required on such a large and important project, the demonstration of the ability to verify the
thermal distortion analysis to the levels required is a critical need for the program. The
demonstration of these analysis tools, in process metrology and manufacturing processes
increases the technology readiness level of the backplane to required levels. To develop this
critical technology, the Backplane Stability Test Article (BSTA) was added to the JWST
program. The BSTA is a representative substructure for the full flight backplane, manufactured
using the same resources, materials and processes. The BSTA will be subject to environmental
testing and its deformation and damping properties measured. The thermally induced
deformation will be compared with predicted deformations to demonstrate the ability to predict
thermal deformation to the levels required. This paper will review the key features and
requirements of the BSTA and its analysis, the test, measurement and data collection plans.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.