The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Structure is a precision optical
metering structure for the JWST science instruments. Optomechanical performance requirements place stringent limits
on the allowable thermal distortion of the metering structure between ambient and cryogenic operating temperature (~35
K). This paper focuses on thermal distortion testing and successful verification of performance requirements for the
flight ISIM Structure. The ISIM Structure Cryoset Test was completed in Spring 2010 at NASA Goddard Space Flight
Center in the Space Environment Simulator Chamber. During the test, the ISIM Structure was thermal cycled twice
between ambient and cryogenic (~35 K) temperatures. Photogrammetry was used to measure the Structure in the
ambient and cryogenic states for each cycle to assess both cooldown thermal distortion and repeatability. This paper will
provide details on the post-processing of the metrology datasets completed to compare measurements with performance
requirements.
The James Webb Space Telescope (JWST) is a general astrophysics mission which consists of a 6.6m diameter,
segmented, deployable telescope for cryogenic IR space astronomy (~35K). The JWST Observatory architecture
includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four
science instruments (SI) including a Guider.
The alignment philosophy of ISIM is such that the cryogenic changes in the alignment of the SI interfaces are captured in
the ISIM alignment error budget. The SIs are aligned to the structure's coordinate system under ambient, clean room
conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled and temperature-induced
structural changes are concurrently measured with a photogrammetry metrology system to ensure they are within
requirements.
We compare the ISIM photogrammetry system performance to the ISIM metrology requirements and describe the
cryogenic data acquired to verify photogrammetry system level requirements, including measurement uncertainty. The
ISIM photogrammetry system is the baseline concept for future tests involving the Optical Telescope Element (OTE) and
Observatory level testing at Johnson Space Flight Center.
A warm window surface with a relatively high (>50%) surface emittance can add significant undesired heat loading into a cryogenic test chamber. However, a front surface coating that consists of a very thin adherent layer of evaporated Cr that is overcoated with about 7nm of evaporated Au has been demonstrated to
reduce the inherently high emittance of a glass or sapphire window surface down to about 14%, while maintaining a visible transmittance in excess of 55%. The coating possesses reasonably good adhesion and cleaning durability when deposited onto glass or sapphire substrates and has survived multiple temperature cycles between 316K and 20K. The addition of a single layer anti-reflection coating, such as reactively evaporated SiOx, to the otherwise uncoated exterior surface of a cryogenic window produced a further increase in visible wavelength transmittance without altering window emittance. This paper will present measured reflectance, transmittance, and emittance data for the Cr + Au window surface coating relevant to
a cryogenic window application.
The James Webb Space Telescope is a large infrared observatory with a segmented primary mirror, part of the
Optical Telescope Element (OTE), and four science instruments supported by the Integrated Science Instrument Module
(ISIM). We present the calibration plan for the ISIM Test Platform (ITP) which replicates the ISIM-to-OTE interface: to
calibrate the location and orientation of metrology features at ambient and cryogenic environmental conditions, to verify
that ITP behavior (deflection under load, warm-to-cold alignment shift) can be modeled, predicted, and tested, to prove
that the ITP is stable (upon repeated cryogenic cycles, and after loading and handling), and to calibrate the relationship
between the Master Alignment Target Fixture and the ITP at ambient and cryogenic conditions.
The James Webb Space Telescope (JWST) is an infrared space telescope scheduled for launch in 2013. JWST has a 6.5 meter diameter deployable and segmented primary mirror, a deployable secondary mirror, and a deployable sun-shade. The optical train of JWST consists of the Optical Telescope Element (OTE), and the Integrated Science Instrument Module (ISIM), which contains four science instruments. When the four science instruments are integrated to ISIM at NASA Goddard Space Flight Center, the structure becomes the ISIM Element. The ISIM Element is assembled at ambient cleanroom conditions using theodolite, photogrammetry, and laser tracker metrology, but it operates at cryogenic temperature, and temperature-induced mechanical and alignment changes are measured using photogrammetry. The OTE simulator (OSIM) is a high-fidelity, cryogenic, telescope simulator that features a ~1.5 meter diameter powered mirror. OSIM is used to test the optical performance of the science instruments in the ISIM Element, including focus, pupil shear, and wavefront error. OSIM is aligned to the flight coordinate system in six degrees of freedom via OSIM-internal cryogenic mechanisms and feedback from alignment sensors. We highlight optical metrology methods, introduce the ISIM and the Science Instruments, describe the ambient alignment and test plan, the cryogenic test plan, and verification of optical performance of the ISIM Element in cryo-vacuum environment.
KEYWORDS: Cameras, Cryogenics, Photogrammetry, James Webb Space Telescope, Distortion, Error analysis, Metrology, Calibration, Received signal strength, Optical alignment
The alignment philosophy of the James Webb Space Telescope (JWST) Integrated Science Instrument
Module (ISIM) is such that the cryogenic changes in the alignment of the science instruments (SIs) and
telescope-related interfaces are captured in an alignment error budget. The SIs are aligned to the structure's
coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The
ISIM structure is thermally cycled and temperature-induced mechanical and structural changes are
concurrently measured to ensure they are within the predicted boundaries.
We report on the ISIM photogrammetry system and its role in the cryogenic verification of the ISIM
structure. We describe the cryogenic metrology error budget and the analysis and testing that was
performed on the ISIM mockup, a full scale aluminum model of the ISIM structure, to ensure that the
system design allows the metrology goals to be met, including measurement repeatability and distortion
introduced from the camera canister windows.
KEYWORDS: Photogrammetry, Nondestructive evaluation, Cameras, Metrology, James Webb Space Telescope, Cryogenics, Temperature metrology, Optical alignment, Space telescopes, Interfaces
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space
astronomy (~40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science
Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM structure must meet
its requirements at the ~40K cryogenic operating temperature.
The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite
metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical,
structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important
component in the JWST Observatory alignment plan and must be verified.
We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry.
Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital
camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric
measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these
measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system.
We describe a process for fabricating lightweight mirrors from single crystal silicon. We also report ambient and
cryogenic test results on a variety of mirrors made by this process. Each mirror is a monolithic structure from a single
crystal of silicon. Masses are typically 1/3rd to 1/4th that of an equal diameter solid quartz mirror. We avoid print
through of the supporting structure by lightweighting after the optical surface has been formed. Because of the
extraordinary homogeneity of single crystal silicon, distortion of the optical surface by the lightweighting process is
negligible for most applications (<1/40th wave RMS @ 633nm). This homogeneity also accounts for the near zero
distortion at cryogenic temperatures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.