In this study, we fabricated an organic scintillator array sensor (OSAS) based the array of organic scintillators. The scintillator array of OSAS for detecting positions of 192Ir gamma-ray source was fabricated using four types of organic scintillators, which emit the scintillating lights of different wavelength, respectively. To evaluate the performance of the OSAS, 192Ir gamma-ray source employed in a HDR brachytherapy was used. In this research, the spectra were measured with positions of 192Ir gamma-ray source which was moved at intervals of 5 mm and 10 mm using the OSAS. The experimental results show that the proposed OSAS can measure and discriminate the wavelength of scintillating lights generated in the OSAS according to the positions of 192Ir gamma-ray source. It is expected that the OSAS can used to detect positions of 192Ir gamma-ray source during a HDR brachytherapy. Further studies are planned to fabricate the OSAS with the different intervals of movements and the small size of organic scintillators.
In this study, we fabricated a dual type fiber-optic radiation sensor (DFORS) system using a spectroscopic technique to measure alpha and beta particles simultaneously and separately. The DFORS is composed of a sensing probe, a plastic optical fiber (POF), a photomultiplier tube (PMT)-amplifier system, and a multichannel analyzer (MCA). As sensing probes, a ZnS(Ag) film and CaF2(Eu) crystal were used for alpha and beta spectroscopy. And, we measured the alpha and beta energy spectra using the proposed DFORS system to discriminate species of the radioisotopes emitting alpha or beta particle. From the experimental results, we demonstrated that the small-sized, flexible, and insertable DFORS system can measure and discriminate the alpha and beta successfully with the spectral information of each radioisotope.
In this study, we fabricated the ultra-thin fiber-optic dosimeter (UTFOD) for high energy photon beam therapy dosimetry. The UTFOD has high spatial resolution due to the relatively small volume compared to conventional dosimeters therefore the UTFOD can measure depth doses precisely in build-up regions of therapeutic radiation beams. For 10 MV photon beams, we measured the scintillation signal generated from the UTFOD according to monitor units (MUs) and dose rates of the clinical linear accelerator (CLINAC). Also, we measured percentage depth doses (PDDs) at different depths of solid water phantoms using the UTFOD and the GAFCHROMIC® EBT films, and the results were compared with those using the Monte Carlo N-Particle eXtended (MCNPX) code.
Cerenkov radiation, which is produced by charged particles that pass through optical fibers with a velocity greater than that of light, is frequently regarded as a severe noise signal in a fiber-optic radiation sensor consisting of a scintillator and an optical fiber. Since the spectral range of Cerenkov radiation is very broad and covers that of light outputs from a scintillator, Cerenkov radiation generated in optical fibers is also acquired by a photodetector. However, Cerenkov radiation can be a significant signal when we measure the intensities of Cerenkov radiation generated from fixed length of optical fibers because it is one of the signals induced by interactions between radiations and optical fibers. In this study, gamma-ray induced Cerenkov radiation generated in silica and plastic optical fibers was measured in order to select an efficient optical fiber for producing Cerenkov radiation. The intensities and the spectra of Cerenkov radiation generated in the optical fibers were measured using a spectrometer. As the results, the intensities of Cerenkov radiation generated in silica and plastic optical fibers have peak wavelengths at approximately 500 nm. Also, the intensity of Cerenkov radiation obtained using a plastic wavelength shifting fiber was the highest among all sample optical fibers.
A fiber-optic dosimeter (FOD) was fabricated using a plstic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure entrance surface dose (ESD) in diagnostic radiology. Under changing tube current and irradition time of the digital radiography (DR) system, we measured the scintillating light and the ESD simultaneously. As experiemtnal results, the total counts of the FOD were changed in a manner similar to the ESDs of the semiconductor dosimeter (SCD). In conclusion, we demonstrated that the proposed FOD minimally affected the diagnostic information of DR image while the SCD caused serious image artifacts.
In this study, we fabricated a fiber-optic radiation sensor using three kinds of inorganic scintillation crystals with the same dimension, such as LYSO:Ce, YSO:Ce, and BGO. Gamma-ray energy spectra for Cs-137 were measured with three kinds of inorganic scintillators to select an optimum scintillator that is suitable to use for gamma-ray energy spectroscopy. The total counts of the scintillating lights, were also obtained according to the activity of Cs-137. As a result, the energy spectra measured using the three scintillators were clearly different, thereby they showed clear distinction about the energy resolution and position of the inherent photopeak of Cs-137. Although all scintillators had a linear response over the activity of Cs-137, we selected LYSO:Ce as an optimum scintillator because it provided good energy resolution and the highest light output in our experimental setup.
Cerenkov radiation occurs when charged particles are moving faster than the speed of light in a transparent dielectric medium. In optical fibers, the Cerenkov light also can be generated due to their dielectric components. Accordingly, the radiation-induced light signals can be obtained using optical fibers without any scintillating material. In this study, to measure the intensities of Cerenkov radiation induced by gamma-rays, we have fabricated the fiber-optic Cerenkov radiation sensor system using silica optical fibers, plastic optical fibers, multi-anode photomultiplier tubes, and a scanning system. To characterize the Cerenkov radiation generated in optical fibers, the spectra of Cerenkov radiation generated in the silica and plastic optical fibers were measured. Also, the intensities of Cerenkov radiation induced by gamma-rays generated from a cylindrical Co-60 source with or without lead shielding were measured using the fiberoptic Cerenkov radiation sensor system.
Cerenkov radiation can be observed easily as a shimmer of blue light from the water in boiling- and pressurized-water reactors, or spent fuel storage pools. In this research, we fabricated the fiber-optic Cerenkov radiation sensor using a Gdfoil, rutile crystal and optical fiber for detecting neutrons. Also, the reference sensor for measuring background gammarays was fabricated with the rutile crystal and optical fiber. The neutron fluxes could be obtained by measuring the signal difference between two sensors. To characterize the fiber-optic Cerenkov radiation sensor, we measured neutron fluxes using a Cf-252 neutron source according to depths of polyethylene. As the results, the counts of fiber-optic Cerenkov radiation sensor were higher than those of reference sensor due to additional interactions between Gd-foil and neutrons. Also, the counts of Cerenkov radiation decreased with increasing polyethylene thickness. It is anticipated that the novel and simple fiber-optic Cerenkov radiation sensor using the Cerenkov effect can be widely used to detect the neutrons in hazardous nuclear facilities.
For real-time dosimetry in both radiation therapeutic and diagnostic applications, a newly-designed dual-mode fiberoptic dosimeter was developed using a scintillating probe and a Cerenkov probe. In this study, we measured the scintillating and Cerenkov lights simultaneously and analyzed the light intensities and spectra of their light signals for the performance evaluation of the proposed fiber-optic dosimeter.
A Cerenkov fiber-optic dosimeter (CFOD) is fabricated using plastic optical fibers to measure Cerenkov radiation induced by a therapeutic photon beam. We measured the Cerenkov radiation generated in optical fibers in various irradiation conditions to evaluate the usability of Cerenkov radiation for a photon beam therapy dosimetry. As a results, the spectral peak of Cerenkov radiation was measured at a wavelength of 515 nm, and the intensity of Cerenkov radiation increased linearly with increasing irradiated length of the optical fiber. Also, the intensity peak of Cerenkov radiation was measured in the irradiation angle range of 30 to 40 deg. In the results of Monte Carlo N-particle transport code simulations, the relationship between fluxes of electrons over Cerenkov threshold energy and energy deposition of a 6 MV photon beam had a nearly linear trend. Finally, percentage depth doses for the 6 MV photon beam could be obtained using the CFOD and the results were compared with those of an ionization chamber. Here, the mean dose difference was about 0.6%. It is anticipated that the novel and simple CFOD can be effectively used for measuring depth doses in radiotherapy dosimetry.
A water-equivalent fiber-optic dosimeter was fabricated using an organic scintillator, a plastic optical fiber and a photo-multiplier
tube for real-time dosimetry in diagnostic radiology. We measured the scintillating lights, which are changed
due to the exposure parameters, by using the fiber-optic dosimeter placed on top of the acrylic-aluminum chest phantom
to provid a backscatter medium. The light output signals of the fiber-optic dosimeter were compared with entrace surface
doses obtained using a dose-area product meter and a semiconductor dosimeter.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.