As the design rule continues to shrink towards 45 nm node and beyond, the lithographers need the new technologies such as immersion lithography and EUV lithography. Also the inspection specification on the printed reticle defects is becoming even more challenging for the reticles used in both lithography methods.
The main purpose of this study is to investigate the pattern defect detection capability on EUV mask with the memory design patterns of 45 nm node and below in the DUV reticle inspection systems at our mask-shop and to compare those results with the absorber defect specification from the EUV lithography simulation in those design rules.
In addition, we investigate the inspection capability on the pattern defects with the test optical mask designed in 45 nm node and below for the immersion lithography and compare the defect detection ability on the EUV mask and the optical mask in the current DUV reticle inspection equipment.
As the design rule continues to shrink towards 65nm size and beyond the defect criteria are becoming ever more challenging. Pattern fidelity and reticle defects that were once considered as insignificant or nuisance are now becoming significant yield impacting defects. The intent of this study is to utilize the new generation DUV system to compare Die-to-Die Reflected Light inspection and Die-to-Die Transmitted Light Inspection to increase defect detection for optimization of the 65nm node process.
In addition, the ReviewSmart will be implemented to help categorically identify systematic tool and process variations and thus allowing user to expedite the learning process to develop a production worthy 65nm node mask process. The learning will be applied to Samsung's pattern inspection strategy, complementing Transmitted Light Inspection, on critical layers of 65 nm node to gain ability to find defects that adversely affect process window.
There are many considerations to the design of BARC materials. Among those many properties, one important property that can effect lithographic performance is BARC coating uniformity. In general, the basic coating property (conformal or planar) depends on basic characteristics of polymer (Mw, chemistry, etc). But another major factor to control the coating uniformity is the choice of solvent system in the formulation of the BARC. According to our experimental results, two major factors that can affect the coating uniformity of one BARC are the vapor pressure and the hydrophilicity of solvents. If any solvent has too high vapor pressure and high hydrophilicity relatively, polymer segregation occurs in BARC surface area in case of high humidity condition, resulted in bad coating uniformity.
In this paper, we will show basic evaluation results including the morphology change of BARC surface with several solvents which can be used in BARC formulation according to various humidity and temperature conditions. And also we will show the solution to overcome this problem in device manufacturing.
The ArF resist has been evaluated focusing on resin character such as molecular weight, monomer composition and polydispersity (Pd). The resin properties were investigated to elucidate that which parameter was affected to the line edge roughness (LER). The Pd was correlated with LER. As the Pd was large, the LER was small. The resin molecular weight and monomer composition were affected to their vertical profile. Low molecular weight portion rich resin resulted in round and t-top profile, whilst high molecular weight rich resin resulted in square profile. The amount of lower molecular weight fraction was changed by purification method. The lower molecular weight resin caused severe tapered profile. It was concluded that 1) shift of Mw to smaller and 2) higher content of low molecular size fraction lead to rounded and tapered pattern profile. Lot-to-lot stable good pattern profile has achieved by controlling polymer molecular weight and content of low molecular size fraction in small variation range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.