Among possible approaches to fusion energy, we regard the Proton Fast Ignition (PFI) as the most credible. PFI as an alternate route to ignition was triggered by the discovery of ultra-bright beams of protons produced by ultra-intense lasers.
Protons are advantageous to other ion species and electrons. Because of their highest ionic charge-to-mass ratio, they are accelerated most efficiently up to the highest energies. They can penetrate deep into a target to reach the high-density region, where the hot spot is to be formed. And they exhibit a characteristic maximum energy deposition at the end of their range, desirable to heat a localized volume. Thus, Focused Energy Inc. has chosen PFI for the primary pathway to fusion energy.
Overview of progress in construction and testing of the laser systems of ELI-Beamlines, accomplished since 2015, is presented. Good progress has been achieved in construction of all four lasers based largely on the technology of diode-pumped solid state lasers (DPSSL). The first part of the L1 laser, designed to provide 200 mJ <15 fs pulses at 1 kHz repetition rate, is up and running. The L2 is a development line employing a 10 J / 10 Hz cryogenic gas-cooled pump laser which has recently been equipped with an advanced cryogenic engine. Operation of the L3-HAPLS system, using a gas-cooled DPSSL pump laser and a Ti:sapphire broadband amplifier, was recently demonstrated at 16 J / 28 fs, at 3.33 Hz rep rate. Finally, the 5 Hz OPCPA front end of the L4 kJ laser is up running and amplification in the Nd:glass large-aperture power amplifiers was demonstrated.
Overview of the laser systems being built for ELI-Beamlines is presented. The facility will make available high-brightness multi-TW ultrashort laser pulses at kHz repetition rate, PW 10 Hz repetition rate pulses, and kilojoule nanosecond pulses for generation of 10 PW peak power. The lasers will extensively employ the emerging technology of diode-pumped solid-state lasers (DPSSL) to pump OPCPA and Ti:sapphire broadband amplifiers. These systems will provide the user community with cutting-edge laser resources for programmatic research in generation and applications of high-intensity X-ray sources, in particle acceleration, and in dense-plasma and high-field physics.
In this paper, we report on current developments aimed at improving the focusability of the Texas Petawatt Laser. Two
major campaigns have been commissioned that address the issue of focusability. First, we implemented a closed loop,
32 actuator bi-moprh deformable mirror (DFM) to compensate for aberrations in the optical train and second, a color
corrector lens assembly was installed that compensates for chromatic errors accumulated in broadband (>15 nm), large
aperture (>20 cm) laser systems.
We will present in detail, pre and post correction results with the DFM and describe challenges faced when one activates
a single shot, high energy closed loop system. Secondly, we will provide modeling and experimental results of our color
correction system. This is a novel approach to a problem only seen in high energy, broadband, large aperture laser
pulses.
By using color correction optics we have demonstrated a 6X increase in focal intensity. With the installation of the
DFM, the rms wavefront error in the system was reduced from 2.4 waves to .131 waves, further increasing intensities
seen at focus by 1 order of magnitude.
We report on the design and construction of the Texas Petawatt Laser. This research facility will consist of two, synchronized laser systems that will be used for a wide variety of high intensity laser and high energy density science experiments. The first laser is a novel, high energy (200 J), short pulse (150 fs) petawatt-class laser that is based on hybrid, broadband optical parametric chirped pulse amplification (OPCPA) and mixed silicate and phosphate Nd:glass amplification. The second laser will provide 500 J at 527 nm (>1 kJ @1053 nm) with pulse widths selectable from 2-20 ns. Design and construction began in early 2003 and is scheduled to complete in 2007. In this report we will briefly discuss some of the important applications of this system, present the design of the laser and review some of the technology used to achieve pulse durations approaching 100 fs. Currently, the facility has been renovated for laser construction. The oscillator and stretcher are operational with the first stage of gain measured at 2×106. Output energies of 500μJ have been achieved with good near field image quality. Delivery has been taken for Nova components that will compose the main amplifier chain of the laser system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.