The initial steps in organic photovoltaic cell (OPV) operation involve the formation of neutral excitons through photo absorption, exciton diffusion to and separation into free charges at the donor acceptor interface.1, 2As the usable solar spectrum spans a large range from the visible to the infra-red (IR), an obvious direction for improved light harvesting is to synthesize donor and acceptor materials with complementary absorption. In such devices, specifically those involving polymer donors and small molecule acceptors, both charge transfer from donor and acceptor moieties, and energy (exciton) transfer from high band gap to low band gap material are possible. Here we show that when charge and exciton transfer processes are present, the co-existence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low band-gap polymer is hindered due to exciton population in the larger band-gap acceptor domains. Our results further show that excitons in the lower bandgap material should have a relatively long lifetime compared to the transfer time of excitons from the higher band gap material, in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.
Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.
Despite the essential role of fullerenes in achieving best-performance organic solar cells (OSCs), fullerene acceptors have several drawbacks including poor light absorption, high-cost production and purification. For this reason, small molecule acceptor (SMA)-based OSCs have attracted much attention due to the easy tunability of electronic and optical properties of SMA materials. In this study, polymers with temperature dependent aggregation behaviors are combined with various small molecule acceptor materials, which lead to impressive power conversion efficiencies of up to 7.3%. The morphological and aggregation properties of the polymer:small molecule blends are studied in details. It is found that the temperature-dependent aggregation behavior of polymers allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:small molecule morphology that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of small molecules. As a result, several cases of highly efficient (PCE between 6-7.3%) SMA OSCs are achieved. The second part of this presentation will describe the morphology of a new small molecule acceptor with a unique 3D structure. The relationship between molecular structure and morphology is revealed.
Current high-efficiency (>9.0%) PSCs are restricted to materials combinations that are based on limited donor polymers and only one specific fullerene acceptor, PC71BM. Furthermore, best-efficiency PSCs are mostly based on relatively thin (100 nm) active layers. Here we first report multiple cases of high-performance thick-film (300 nm) PSCs (efficiencies up to 10.8%, fill factors up to 77%) based on conventional PCBM and many non-PCBM fullerenes. Our simple aggregation control and materials design rules allowed us to develop, within a short time, three new donor polymer, six fullerenes (including C60-based fullerenes), and over ten polymer:fullerene combinations, all of which yielded higher efficiency than previous state of art devices (~9.5%). The common structural feature of the three new donor polymers, the 2-octyldodecyl (2OD) alkyl chains sitting on quaterthiophene, causes a temperature-dependent aggregation behavior that allows for the processing of the polymer solutions at moderately elevated temperature, and more importantly, controlled aggregation and strong crystallization of the polymer during the film cooling and drying process. This results in a well-controlled and near-ideal polymer:fullerene morphology (containing highly crystalline, preferentially orientated, yet small polymer domains) that is controlled by polymer aggregation during warm casting and thus insensitive to the choice of fullerenes. The 2OD structural motif is then further applied to several other polymer backbones and produces three additional polymers with efficiencies between 10-11.5%. Our best efficiency (11.5%) is achieved via the combination of new structural designs, interface and optical engineering and optimizations on the solvents and additives of the polymer:fullerene solution.
In this paper we report on the use of two solution-processable polymeric and molecular n-channel semiconductors for the
fabrication of transistors and CMOS inverters by gravure printing and inkjet printing. Furthermore, the injket-printed
TFT/invertor stability characteristics are analyzed and discussed.
N-channel organic thin-film transistors (OTFTs) based on N,N'-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-
bis(dicarboximide) (PDI8-CN2) were fabricated using different semiconductor film deposition methods, dielectric
materials, and device structures. It was found that top -contact OTFTs fabricated on Si-SiO2 substrates with drop-cast or
vapor deposited films afford comparable electron mobilities (0.01-0.1 cm2/Vs), much larger than those based on spin-coated
PDI8-CN2 films (0.001 cm2/Vs). Furthermore, n-channel top-contact TFTs were fabricated using solution-processed
PDI8-CN2 films and a UV-curable solution-processed polymeric dielectric. These devices exhibit typical gate
leakage currents < 1nA for Vgate > 100V, which are negligible compared to the corresponding source/drain currents (>
0.1mA). OTFTs tested in ambient exhibit electron mobilities as high as 0.05-0.2 cm2/Vs and Ion:Ioff ~ 105. Furthermore,
Isource-drain-Vgate hysterisis is negligible when the OTFTs were tested in both bias directions at different Vgate scan rates,
demonstrating excellent insulator-semiconductor interfacial properties. Bottom-contact TFTs exhibit typical lower
performance (~ ×0.1)compared to the top-contact structure. All of the devices stored in air for several months exhibit no
degradation of the device characteristics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.