Correcting phase errors is key to building low cost, high performance integrated optical phased arrays for mass-market applications such as automotive lidar. In this work, we present a phase interrogator component for optical phased arrays which enables the phase error to be measured immediately before the output array of optical emitters. A 32-element silicon/silicon nitride optical phased array is realized in a dual layer photonics stack to verify the component performance. Silicon enables high density integration of photonic components and the phase interrogator has a compact design which fits between waveguides with a separation of 2.5 μm. The phase interrogators enable correction of the beam without any measurement or evaluation of the far-field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.