There is much interest in enhancement of the absorbance performance of nonlinear absorber solid-state filters. In this work we present an advanced reversible nonlinear filter based on a dye-doped sol-gel matrix. The absorbance enhancement was achieved by using a combination of two absorption mechanisms in the same molecule; a photochromic absorption which is induced by 2-photon absorption (2PA). The 2PA serves as the trigger for initiating the photochromism through Förster-resonance-energy-transfer (FRET) between the fluorescent donor and the photochromic acceptor. We synthesized a new bifunctional-chromophore that incorporated a carbazole-derived 2PA fluorescent donor and a chromene-derived photochromic acceptor, covalently linked together in a single molecule by a ~6 Å carboxyl group or oxygen bridge. The bifunctional-chromophore was doped in an inorganic-organic hybrid matrix prepared by the fast-sol-gel process. These materials solidify without shrinkage or formation of cracks and present promising properties as optical matrices for smart filters. The dye-doped sol-gel disc presents high transparency in the visible region ("colorless"), which under UV-irradiation (one-photon absorption in the photochromic part of the molecule), transforms into a strongly absorbing filter ("dark colored"), due to the conversion of the photochromic moiety to its "open" absorbing form. We have demonstrated that this ring-opening can also be induced by visible-light (620 nm) using the 2PA carbazole-derived moiety of the molecule. We have studied the fabrication routes and optical performance of these filters. We present studies of the 2PA mechanism of the carbazole derivative, FRET efficiency of the combined-molecule as well as in solutions of the individual moieties, and reversible dynamics of the photochromic moiety.
All optical switching (AOS) applications require materials with a large nonlinear refractive index (n2) but relatively small linear and nonlinear absorption loss. The figure-of-merit (FOM), defined as the ratio between the real and imaginary parts of the second hyperpolarizability (γ), is widely used to evaluate the operating efficiency of AOS materials. By using an essential-state model, we describe the general dispersion behavior of γ of symmetric organic molecules and predict that the optimized wavelength range for a large FOM is near its linear absorption edge for cyanine-like dyes. Experimental studies are normally performed on organic solutes in solution which becomes problematic when the solvent nonlinearity dominates the total signal. This has been overcome using a Dual-arm Z-scan methodology to measure the solution and solvent simultaneously on two identical Z-scan arms and discriminating their small nonlinear signal difference. This technique significantly reduces the measurement uncertainty by correlating the excitation noise in both arms, leading to nearly an order-of-magnitude increase in sensitivity. Here we investigate the n2 and two-photon absorption (2PA) spectra of several classes of cyanine-like organic molecules and find that the results for most molecules agree qualitatively and quantitatively with the essential-state model. Many cyanine-like molecules show a relatively small FOM due to the presence of large 2PA bands near the linear absorption edge; however, an exception is found for a thiopyrylium polymethine molecule of which the maximum FOM can be < 400, making it an excellent candidate for AOS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.