Starbugs are self-motile fibre optic positioning robots developed by AAO-MQ. MANIFEST (MANy Instrument FibrE SysTem) is a facility class Instrument which will operate up to 900 Starbugs on the Giant Magellan Telescope (GMT). The FOBOS (Fibre-Optic Broadband Optical Spectrograph) Fibre Positioner is a facility class Instrument which will operate up to 1800 Starbugs on the Keck Telescope. Starbugs deliver an optical payload to the location of an astronomical object on the telescope focal plane. The Starbugs are made from a pair of concentric Piezoceramic Tubes (PZT), and a high-voltage waveform is applied to the PZT to create an actuation. Staging of the waveform creates successive microsteps, on the order of 3-20 μm each, at a driven frequency of 100Hz. The Starbugs are adhered to the Glass Field Plate (GFP) using an ancillary vacuum system, which must provide sufficient adhesion force to maintain the Starbug GFP position in the high-altitude environmental conditions at Mauna Kea (MKO) and Las Campanas Observatory (LCO) sites. The minimum vacuum adhesion requirements to achieve Starbug GFP position were used to specify the vacuum pump flow rate and operational head pressure. The vacuum adhesion requirements were experimentally obtained using the Starbug Test Stand, located in Sydney, Australia. The Starbugs Test Stand vacuum adhesion requirements were parametised for dry air mass flow rate and head pressure, and then corrected for the 95th percentile environmental conditions at MKO and LCO. The vacuum system numerical model was verified by the TAIPAN instrument. When corrected for ambient atmospheric conditions at the UK Schmidt Telescope (Siding Spring Observatory, Australia), the numerical model could predict the steady state vacuum pump speed with 1.29% variation from the measured vacuum pump speed recorded by the TAIPAN Instrument control software. This capability of the numerical model will be used for real-time condition monitoring of the Starbugs Instruments.
The 4m DAG telescope is under construction at East Anatolia Observatory in Turkey. DIRAC, the “DAG InfraRed Adaptive optics Camera”, is one of the facility instruments. This paper describes the design of the camera to meet the performance specifications. Adaptive and auxiliary optics relay the telescope F/14 input 1:1 into DIRAC. The camera has an all refractive design for the wavelength range 0.9 - 2.4 micron. Lenses reimage the telescope focal plane 33 x 33 as (9 x 9 mm) on a 1k x 1k focal plane array. With magnification of 2x, the plate scale on the detector is 33 mas/pixel. There are 4 standard filters (Y, J, H, K) and 4 narrowband continuum filters. A 12 position filter wheel allows installation of 2 extra customer filters for specific needs; the filter wheel also deploys a pupil viewer lens. Optical tolerancing is carried out to deliver the required image quality at polychromatic Strehl ratio of 90% with focus compensator. This reveals some challenges in the precision assembly of optics for cryogenic environments. We require cells capable of maintaining precision alignment and keeping lenses stress free. The goal is achieved by a combination of flexures with special bonding epoxy matching closely the CTE of the lens cells and crystalline materials. The camera design is very compact with object to image distance <220 mm and lens diameters <25 mm. A standalone cryostat is LN2 cooled for vibration free operation with the bench mounted adaptive optics module (TROIA) and coronagraph (PLACID) at the Nasmyth focus of the DAG telescope.
The Australian Astronomical Observatory’s (AAO’s) AESOP project is part of the Multi-Object Spectrograph Telescope (4MOST) system for the VISTA telescope. It includes the 2436-fibre positioner, space frame and electronics enclosures. The AESOP concept and the role of the AAO in the 4MOST project have been described in previous SPIE proceedings. The project final assembly stage has recently been completed. In this paper, key results in accurate manufacturing and assembly of critical AESOP components are discussed. The major performance requirement for AESOP is that all 2436 science fibre cores and 12 guide fibre bundles are to be re-positioned to an accuracy of 10 micron within 1 minute. With a fast prime-focus focal-ratio, a close tolerance of +/-70 microns on the axial position of the fibre tips must be held so efficiency does not suffer from de-focus losses. Positioning accuracy is controlled with the metrology cameras installed on the telescope, which measures the positions of the fibre tips to an accuracy of a few micrometers and allows iterative positioning until all fibre tips are within tolerance on the ultimate position. Maintaining co-planarity of the fibre tips requires accurate control in the assembly of several components that contribute to such errors. Overall, the AESOP design fully complies with all its requirements and in most cases achieves its goals. A thorough consideration of all the relevant interfaces during the design and assembly phases, has resulted in comprehensive set of ICDs for the mechanical, electrical and software aspects of AESOP.
The Australian Astronomical Observatory’s (AAO’s) AESOP project is part of the Multi-Object Spectrograph Telescope (4MOST) system for the VISTA telescope. It includes the 2436-fibre positioner, space frame and electronics enclosures. The AESOP concept and the role of the AAO in the 4MOST project have been described in previous SPIE proceedings. The project final assembly stage has been completed. In this paper, engineering principles applied during assembly of critical components and testing of the instrument are discussed. The major performance requirement for AESOP is that all 2436 science fiber cores and 12 guide fiber bundles are to be re-positioned to an accuracy of 10 micron within 1 minute. With a fast prime-focus focal-ratio, a close tolerance on the axial position of the fiber tips must be held so efficiency does not suffer from de-focus losses. Positioning accuracy is controlled with the metrology cameras installed on the telescope, which measures the positions of the fiber tips to an accuracy of a few micrometers and allows iterative positioning until all fiber tips are within tolerance on the focal surface plane. Maintaining co-planarity of the fiber tips requires accurate control in the assembly of several components that contribute to such errors. AESOP requires a consistent production of high accuracy components and assemblies in a quantity of above 2500 items. To achieve this, we had to apply the highest engineering standards, including assembly procedures, metrology, and control systems. We designed many jigs and fixtures, which enabled us to produce high quality components and assemblies at reasonable cost. The results – working instrument was vastly achieved with the help of university students after providing a training in engineering practices.
Starbugs are self-motile fibre optic positioning robots developed by AAO-MQ. The MANIFEST (MANy Instrument FibrE SysTem) is a facility class Instrument which will operate up to 900 Starbugs on the Giant Magellan Telescope (GMT). The FOBOS (Fibre-Optic Broadband Optical Spectrograph) Fibre Positioner is a facility class Instrument which will operate up to 1800 Starbugs on the Keck Telescope. The Starbugs deliver an optical payload to the location of an astronomical object on the telescope focal plane. The Starbugs are made from a pair of concentric Piezoceramic Tubes (PZT), and a high-voltage waveform is applied to the PZT to create an actuation. Staging of the waveform creates successive microsteps, on the order of 3-20 μm each, at a driven frequency of 100Hz. The Starbugs are adhered to the Glass Field Plate (GFP) using an ancillary vacuum system. The Starbugs have an airtight vacuum sealing component between the PZT and the GFP, called Slippers, which serve as a traction surface against the polished GFP. The Slippers set the science fibre focus offset, which has functional requirements that trace to Observatory level requirements. The Slipper components are subject to non-zero centred fully reversed fatigue loading due to the combined load case of the vacuum induced compression and the shear load of the PZT actuation as the Starbug completes the step. The contact interface between the Slipper and the GFP is subject to surface fatigue and functions as a sacrificial wear surface to ensure the longevity of both the PZT and the optical payload. The fatigue life behaviour of the Slipper, with particular interest on this interface, was defined using industry standard methods and informed the trade study to select the appropriate material for the Slippers to survive a nominal period on-sky (fatigue life). The trade study terms were vacuum sealing ability as a function of mechanical hardness versus fatigue life (108 cycles). Several suitable materials were identified and will be physically prototyped, with results reported in this manuscript.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.