IXPE, the Imaging X-ray Polarimetry Explorer, is a NASA SMEX mission with an important contribution of ASI that will be launched with a Falcon 9 in 2021 and will reopen the window of X-ray polarimetry after more than 40 years. The payload features three identical telescopes each one hosting one light-weight X-ray mirror fabricated by MSFC and one detector unit with its in-orbit calibration system and the Gas Pixel Detector sensitive to imaging X-ray polarization fabricated by INAF/IAPS, INFN and OHB Italy. The focal length after boom deployment from ATK-Orbital is 4 m, while the spacecraft is being fabricated by Ball Aerospace. The sensitivity will be better than 5.5% in 300 ks for a 1E-11 erg/s/cm2 (half mCrab) in the energy band of 2-8 keV allowing for sensitive polarimetry of extended and point-like X-ray sources. The focal plane instrument is completed, calibrated and it is going to be delivered at MSFC. We will present the status of the mission at about one year from the launch.
The Imaging X-ray Polarimetry Explorer (IXPE) will add polarization to the properties (time, energy, and position) observed in x-ray astronomy. A NASA Astrophysics Small Explorer (SMEX) in partnership with the Italian Space Agency (ASI), IXPE will measure the 2–8-keV polarization of a few dozen sources during the first 2 years following its 2021 launch. The IXPE Observatory includes three identical x-ray telescopes, each comprising a 4-m-focal-length (grazingincidence) mirror module assembly (MMA) and a polarization-sensitive (imaging) detector unit (DU), separated by a deployable optical bench. The Observatory’s Spacecraft provides typical subsystems (mechanical, structural, thermal, power, electrical, telecommunications, etc.), an attitude determination and control subsystem for 3-axis stabilized pointing, and a command and data handling subsystem communicating with the science instrument and the Spacecraft subsystems.
X-Ray telescopes with optics and detectors at opposite ends of semi-rigid, extendable booms can improve their imaging performance if the flexing of the boom is measured and removed in image reconstruction. This has been accomplished on previous missions with analog position detectors and highly stable laser pointing indicators. This report shows that a flight-proven digital imaging system observing LED sources, can achieve as high or higher precision measurements without extensive calibration at modest cost.
The Imaging X-ray Polarimetry Explorer (IXPE) will expand the information space for study of cosmic sources, by adding polarization to the properties (time, energy, and position) observed in x-ray astronomy. Selected in 2017 January as a NASA Astrophysics Small Explorer (SMEX) mission, IXPE will be launched into an equatorial orbit in 2021. The IXPE observatory includes three identical x-ray telescopes, each comprising a 4-m-focal-length (grazing-incidence) mirror module assembly (MMA) and a polarization-sensitive (imaging) detector unit (DU). The optical bench separating the MMAs from the DUs is a deployable boom with a tip/tilt/rotation stage for DU-to-MMA (gang) alignment, similar to the configuration used for the NuSTAR observatory. The IXPE mission will provide scientifically meaningful measurements of the x-ray polarization of a few dozen sources in the 2-8 keV band, over the first two years of the mission. For several bright, extended x-ray sources (pulsar wind nebulae, supernova remnants, and an active-galaxy jet), IXPE observations will produce polarization maps indicating the magnetic structure of the synchrotron emitting regions. For many bright pulsating x-ray sources (isolated pulsars, accreting x-ray pulsars, and magnetars), IXPE observations will produce phase-resolved profiles of the polarization degree and position angle.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.