Publisher's Note: This paper, originally published on 30 July 2024, was replaced with a corrected/revised version on 8 November 2024. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
The EXoplanet Climate Infrared TElescope (EXCITE) is a near-infrared spectrograph (0.8-3.5 μm, R∼50) designed for measuring spectroscopic phase curves of transiting hot Jupiter-type exoplanets that operates off a high-altitude balloon platform. Phase curves produce a combination of phase curve and transit/eclipse spectroscopy, providing a wealth of information for characterizing exoplanet atmospheres. EXCITE will be a firstof- kind dedicated telescope uniquely able to observe a target nearly uninterrupted for tens of hours, enabling phase curve measurements, and complementing JWST. The spectrometer has two channels, a 0.8-2.5 μm band and a 2.5-3.5 μm band, providing a spectrum with a spectral resolution of R≥50. Two Off-Axis Parabolic (OAP) mirrors reimage the telescope focal plane to provide on-axis, diffraction-limited performance, wth a CaF2 prism providing dispersion. The spectrum is imaged with a single JWST flight spare Teledyne H2RG detector, providing Nyquist sampling of each channel. Here, we discuss the spectrograph’s mechanical design, acceptance testing, assembly, and cryostat integration.
The EXoplanet Climate Infrared TElescope (EXCITE) is an instrument designed to measure spectroscopic phase curves of extrasolar hot Jupiters from a long duration balloon platform. EXCITE will fly a moderate resolution spectrometer housed inside of a cryogenic receiver actively cooled by two linear pulse tube cryocoolers. Here we provide the current status of the design and performance of the cryogenic receiver, its heat rejection mechanism, and associated control electronics. A recirculating methanol fluid loop rejects heat from the cryocoolers and transports it to sky-facing radiator panels mounted to the gondola. The cryocoolers are controlled by drive electronics with active vibration reduction functionality to minimize the impact of vibrations on pointing stability. We discuss the thermal and vibrational performance of the cryogenic receiver during ground-based pointing tests in its 2023 field campaign in Ft. Sumner, NM and present its current status as EXCITE prepares for its 2024 test flight campaign.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.