Due to the highly general surface geometry of freeform optics, the measurement of freeform optical surfaces is still a challenging and rewarding issue. Here, we propose a simultaneous multi-surface measurement method based on deep learning for freeform refractive optics, in which the surfaces are reconstructed based on the transmitted wavefront measured with computer-aided deflectometry. By adopting the deep learning approaches in geometrical error calibration and wavefront reconstruction, both the efficiency and robustness is significantly improved, and the surface measurement accuracy in the order of nanometers can be achieved. The proposed method provides an effective, robust and accurate way for testing freeform refractive optics with multiple surfaces and a large slope range
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.