Imaging is often a first-line method for diagnostics and treatment. Radiological workflows increasingly mine medical images for quantifiable features. Variability in device/vendor, acquisition protocol, data processing, etc., can dramatically affect quantitative measures, including radiomics. We recently developed a method (PixelPrint) for 3D-printing lifelike computed tomography (CT) lung phantoms, paving the way for future diagnostic imaging standardization. PixelPrint generates phantoms with accurate attenuation profiles and textures by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. The present study introduces a library of 3D printed lung phantoms covering a wide range of lung diseases, including usual interstitial pneumonia with advanced fibrosis, chronic hypersensitivity pneumonitis, secondary tuberculosis, cystic fibrosis, Kaposi sarcoma, and pulmonary edema. CT images of the patient-based phantom are qualitatively comparable to original CT images, both in texture, resolution and contrast levels allowing for clear visualization of even subtle imaging abnormalities. The variety of cases chosen for printing include both benign and malignant pathology causing a variety of alveolar and advanced interstitial abnormalities, both clearly visualized on the phantoms. A comparison of regions of interest revealed differences in attenuation below 6 HU. Identical features on the patient and the phantom have a high degree of geometrical correlation, with differences smaller than the intrinsic spatial resolution of the scans. Using PixelPrint, it is possible to generate CT phantoms that accurately represent different pulmonary diseases and their characteristic imaging features.
Patient-based CT phantoms, with realistic image texture and densities, are essential tools for assessing and verifying CT performance in clinical practice. This study extends our previously presented 3D printing solution (PixelPrint) to patient-based phantoms with soft tissue and bone structures. To expand the Hounsfield Unit (HUs) range, we utilize a stone-based filament. Applying PixelPrint, we converted patient DICOM images directly into FDM printer instructions (G-code). Density was modeled as the ratio of filament to voxel volume to emulate attenuation profiles for each voxel, with the filament ratio controlled through continuous modification of the printing speed. Two different phantoms were designed to demonstrate the high reproducibility of our approach with micro-CT acquisitions, and to determine the mapping between filament line widths and HU values on a clinical CT system. Moreover, a third phantom based on a clinical cervical spine scan was manufactured and scanned with a clinical spectral CT scanner. CT image of the patient-based phantom closely resembles the original CT image both in texture and contrast levels. Measured differences between patient and phantom are around 10 HU for bone marrow voxels and around 150 HU for cortical bone. In addition, stone-based filament can accurately represent boney tissue structures across the different x-ray energies, as measured by spectral CT. This study demonstrates the feasibility of our 3D-printed patient-based phantoms to be extended to soft-tissue and bone structure while maintaining accurate organ geometry, image texture, and attenuation profiles for spectral CT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.