Polstar combines, for the first time, the complementary benefits of spectroscopy and polarimetry to probe the complex interface between massive stars and the interstellar medium. Furthermore, it leverages an innovative combination of effective area and time coverage, to reach the diversity of targets necessary to transform our understanding of the ecology of star and planet creation. Detailed knowledge of these bright, yet distant objects, is crucial for understanding the transformation of our galaxy, from the barren landscape of the early Big Bang, into the chemically enriched environment that produced the solar system we call home. Polstar will map stellar wind and magnetospheric structures by uniting time domain, polarimetry and spectroscopy capability in the near- and far-UV (NUV and FUV), which are densely populated with high-opacity resonance lines encoding a rich array of diagnostic information. UV spectropolarimetry is equally important for probing interstellar dust and protoplanetary disks. The instrument combines advances in high reflectivity UV coatings and delta-doped CCDs with high quantum efficiencies to provide dedicated FUV spectropolarimetry for the first time in 25 years. The FUV channel (Ch1), covers 122-200nm at resolution R>30k, while the NUV channel (Ch2) covers 122-320nm at R~140-4,000. The instrumental polarization stability is built to provide signal-to-noise ratios (SNR) for UV polarimetry precision of 1x10-3 per exposure per resolution element (resel). Precision can be further improved with spectral binning and/or stacking multiple exposures. Polstar spectral resolution in Ch1 is >30x better than WUPPE, with 10x better effective area, while reaching shorter wavelength than WUPPE to access strong lines of species like NIV and SiIV. The 3-year mission of Polstar is 100x longer than WUPPE with orders of magnitude gains in stellar and interstellar observations.
The Polstar mission will provide for a space-borne 60cm telescope operating at UV wavelengths with spectropolarimetric capability capturing all four Stokes parameters (intensity, two linear polarization components, and circular polarization). Polstar’s capabilities are designed to meet its goal of determining how circumstellar gas flows alter massive stars' evolution, and finding the consequences for the stellar remnant population and the stirring and enrichment of the interstellar medium, by addressing four key science objectives. In addition, Polstar will determine drivers for the alignment of the smallest interstellar grains, and probe the dust, magnetic fields, and environments in the hot diffuse interstellar medium, including for the first time a direct measurement of the polarized and energized properties of intergalactic dust. Polstar will also characterize processes that lead to the assembly of exoplanetary systems and that affect exoplanetary atmospheres and habitability. Science driven design requirements include: access to ultraviolet bands: where hot massive stars are brightest and circumstellar opacity is highest; high spectral resolution: accessing diagnostics of circumstellar gas flows and stellar composition in the far-UV at 122-200nm, including the NV, SiIV, and CIV resonance doublets and other transitions such as NIV, AlIII, HeII, and CIII; polarimetry: accessing diagnostics of circumstellar magnetic field shape and strength when combined with high FUV spectral resolution and diagnostics of stellar rotation and distribution of circumstellar gas when combined with low near-UV spectral resolution; sufficient signal-to-noise ratios: ~103 for spectropolarimetric precisions of 0.1% per exposure; ~102 for detailed spectroscopic studies; ~10 for exploring dimmer sources; and cadence: ranging from 1-10 minutes for most wind variability studies, to hours for sampling rotational phase, to days or weeks for sampling orbital phase. The ISM and exoplanet science program will be enabled by these capabilities driven by the massive star science.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.