KEYWORDS: Data centers, Data storage, Calibration, Solar telescopes, Data acquisition, Data modeling, Calibration, Solar processes, Computing systems, Sun, Visible radiation
The Daniel K Inouye Solar Telescope, under construction in Maui, is designed to perform high-resolution spectropolarimetric visible and infrared measurements of the Sun, and will annually produce 3 PB of data, via 5x108 images and 2x1011 metadata elements requiring calibration, long-term data management, and open and free distribution. After briefly describing the DKIST and its instrument suite, we provide an overview of functions that the DKIST Data Center will provide, and focus on major challenges in its development. We conclude by discussing approach and mention some technologies that the Data Center team is using to develop a petascale computational and data storage resource to support this unique world-class DKIST facility and support its long-term scientific and operational goals.
KEYWORDS: Data centers, Calibration, Data centers, Solar telescopes, Observatories, Telescopes, Sun, Electroluminescent displays, Solar processes, Algorithm development, Space telescopes
The Daniel K. Inouye Solar Telescope (DKIST), currently under construction on Haleakalā, in Maui, Hawai'i will be the largest solar telescope in the world and will use adaptive optics to provide the highest resolution view of the Sun to date. It is expected that DKIST data will enable significant and transformative discoveries that will dramatically increase our understanding of the Sun and its effects on the Sun-Earth environment. As a result of this, it is a priority of the DKIST Data Center team at the National Solar Observatory (NSO) to be able to deliver timely and accurately calibrated data to the astronomical community for further analysis. This will require a process which allows the Data Center to develop calibration pipelines for all of the facility instruments, taking advantage of similarities between them, as well as similarities to current generation instruments. There will also be a challenges which are addressed in this article, such as the large volume of data expected, and the importance of supporting both manual and automated calibrations. This paper will detail the current calibration development strategies being used by the Data Center team at the National Solar Observatory to manage this calibration effort, so as to ensure delivery of high quality scientific data routinely to users.
KEYWORDS: Visible radiation, Calibration, Solar telescopes, Solar processes, Spatial resolution, Coronagraphy, Near infrared, Data centers, Telescopes, Adaptive optics
The Daniel K. Inouye Solar Telescope is a 4-meter-class all-reflecting telescope under construction on Haleakalā
mountain on the island of Maui, Hawai’i. When fully operational in 2019 it will be the world's largest solar telescope
with wavelength coverage of 380 nm to 28 microns and advanced Adaptive Optics enabling the highest spatial resolution
measurements of the solar atmosphere yet achieved. We review the first-generation DKIST instrument designs, select
critical science program topics, and the operations and data handling and processing strategies to accomplish them.
KEYWORDS: Telescopes, Data storage, Data archive systems, Data processing, Data acquisition, Optical instrument design, Databases, Data centers, Solar telescopes, Sensors
We present an overview of the conceptual design of the data handling unit of the ECS, the Control System for the
European Solar Telescope (EST). We will focus on describing the critical requirements for this unit resulting from the
overall design of the telescope, together with its architecture and the results of the feasibility analysis carried out to date.
KEYWORDS: Telescopes, Data storage, Control systems, Databases, Sensors, Space telescopes, Data centers, Data acquisition, Observatories, Data archive systems
We introduce the concepts for the control and data handling systems of the European Solar Telescope (EST),
the main functional and technical requirements for the definition of these systems, and the outcomes from the
trade-off analysis to date. Concerning the telescope control, EST will have performance requirements similar to
those of current medium-sized night-time telescopes. On the other hand, the science goals of EST require the
simultaneous operation of three instruments and of a large number of detectors. This leads to a projected data
flux that will be technologically challenging and exceeds that of most other astronomical projects. We give an
overview of the reference design of the control and data handling systems for the EST to date, focusing on the
more critical and innovative aspects resulting from the overall design of the telescope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.