Localized surface plasmon resonance (LSPR) on metallic nanostructures is able to enhance photoluminescence (PL) emission significantly. However, the mechanism for anomalous blue-shifted peak of PL emission from metallic nanostructures, relative to the corresponding scattering spectra, is still unclear so far. In this paper, we presented the detailed investigations on both the Lorentz-like PL profile with blueshifted peak and Fano-like one with almost unshifted dip, as observed on dolmen-like metallic nanostructures. Such anomalous PL emission profile is the product of the density of plasmon states (DoPS) with Lorentz-/Fano-like profile and the population distribution of the relaxed collective free electrons during relaxation. To be more specific, the fast relaxation process of these collective free electrons contributes to the PL shifting characteristics of both Lorentz-like and Fano-like emission profiles. We believed that our results provide a general solid foundation and guidance for analyzing and manipulating the physical processes of the PL emission from various plasmonic nanostructures.
A special kind of one-dimensional magnetic photonic crystal (MPC) with the same refractive indices of the composites is
investigated. We adopt the transmission matrix method to analyze the transmission properties of the special MPCs. The
results indicate that the stop-band edges of TE mode coincide with those of TM mode, and the stop bands for both modes
expand as the incident angle increases. Based on the incident angle domain method, the ODTR band determined by the
wave impedance ratio can be enlarged using a heterostructure. Moreover, the requirement of ODTR of each sub-PC is
unnecessary, which extends the range of materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.