Hard X-ray nanotomography is a commonly used tool in many research areas such as material science, biology and medicine. The nanotomography station at the P05 imaging beamline at PETRA III at DESY is operated by the Helmholtz-Zentrum Hereon and optimized for full-field X-ray nanoimaging techniques. It offers spatial resolutions down to below 50 nm, as well as a high temporal resolution. The technical design allows for a high flexibility and is optimized for in situ experiments. The two major full-field techniques offered to the user community are transmission X-ray microscopy with optionally Zernike phase contrast and near-field holography. Here, the different full-field nanoimaging techniques, as well as the latest technical developments are presented.
We report about multiscale tomography with high throughput at the Diamond beamline I13L. The beamline has the purpose of multi-scale and operando imaging and consists of two independent branchlines operating in real and reciprocal space. The imaging branch -called Diamond-Manchester branchline- hosts micro-tomography, grating interferometry and a full-field microscope. For rapid recording a broad spectrum of the undulator radiation is used either with band-passing the light with a combination of a filter and a deflecting mirror or using a multilayer monochromator. For all the methods similar recording times can be achieved, with typical scanning times of some minutes and covering the resolution range from microns to the 100nm range. Most recently a robot arm has been installed to increase the throughput to 300 samples per day. The system is now implemented for user operation in remote operation mode for the micro-tomography setup and can be expanded to the two other experiments. The instrumental capabilities are applied on various topics such as the study of biodiversity of insects or the structural variations of electrode materials in batteries. Fast recording with dedicated sample environments (not using the sample changing robot) enables operando studies in many areas, the charging/discharging cycles on batteries, the degradation of teeth enamel under various conditions or loading brine sandstone mixtures with CO2, to name some examples. For imaging with highest spatial resolution we managed to improve significantly the recording speed of ptycho-tomography, which is now in the order of hours and will be reduced further. We demonstrated in the past 2-D recording with 10kHz and expand the instrumental capability with specific hardware dependent triggering and scanning schemes. We expand the research program for multi-scale imaging across both branchlines (imaging and coherence branchlines) with first studies such as batteries, brain research, concrete.
We report about our current capabilities and future plans in multi-scale imaging with high recording speed. For micro-tomographic imaging an automated system is used measuring up to 300 samples per day. For sub-micron and nano measurements the so-called polychromatic ‘pink beam’ is employed. The larger energy bandwidth compared to monochromatic beam permits recording times similar to microtomography. For highest resolution namely ptychography the acquisition time for tomographic scans is currently in the order of hours and below an hour in the near future. The current multi-scale science and the scientific perspective with the Diamond beamline I13L upgrade will be presented.
X-ray Grating Talbot Interferometer (XGTI) is already routinely used for quantitative phase contrast imaging of soft tissue samples. XGTI can be realized using various measurement techniques, depending on the X-ray source used, the required spatial resolution and the speed of acquisition. The phase-stepping measurement technique, which is commonly used for XGTI data acquisition, needs multiple acquisitions for a single projection. For fast imaging the Moiré technique, a single-shot technique, is often preferred. However, it requires two gratings which increases the dose on the sample. We have therefore examined the Spatial Harmonic Imaging (SHI) technique which is low-dose and single-shot, using the I13-2 Diamond-Manchester Beamline at Diamond Light Source (DLS). The DLS I13-2 beamline is equipped with a Double Crystal Monochromator (DCM) and a Multi-Layer Monochromator (MLM) to deliver monochromatic beam, which work at the energy bandwidths (ΔE/E) of 10-4 and 10-2, respectively. However, the disadvantage of using these monochromators, especially for fast imaging, is loss of X-ray flux. It has already been shown that XGTI can work with an energy bandwidth (ΔE/E) of 10-1. Our aim is to develop a single phase grating interferometer with pink beam from an undulator source, with X-ray mirror optics and multiple absorption filters, to obtain maximum possible flux with sufficient coherence and monochromaticity. We demonstrate performance with optimized beamline parameters for a photon energy of 15 keV with some demonstrative image reconstructions.
The DIAMOND beamline I13L is dedicated to multi-scale and multi-modal imaging in real and reciprocal space. The beamline consists of two independently operating experimental stations, located at a distance of more than 200 m from the source. The Imaging Branch performs micro-tomography with in-line phase contrast in the 6-30 keV energy range. In addition, a grating interferometry setup and a full-field microscope for nano-tomography are currently implemented. Other techniques providing high-resolution three-dimensional information, in particular coherent X-ray diffraction, are hosted on the Coherence Branch. All imaging methods are tested to operate with large energy bandwidths and therefore shorter exposure times. To this end, two options are currently used: the so-called ‘pink-beam’ mode using a reflecting mirror and X-ray filters and monochromatic mode using a multilayer monochromator. The operation mode enables science for in-situ and operando studies across a wide range of scientific areas.
The Diamond Beamline I13L is dedicated to micro- and nano- imaging, with two independently operating branchlines. The imaging branch preforms imaging in real space, with In-line phase contrast imaging and grating interferometry at micrometre resolution and full-field transmission microscopy up to 50nm spatial resolution. Highest spatial resolution is achieved on the coherence branchline, where diffraction imaging methods such as Ptychography and Bragg-CDI are performed. The article provides an update about the experimental capabilities at the beamline with an emphasis on the rapidly evolving ptychography capabilities. The latter has evolved to an user-friendly method with non-expert users able to explore their science without any specific a-priory knowledge.
The Diamond Beamline I13L is dedicated to imaging on the micro- and nano-lengthsale, operating in the energy range
between 6 and 30keV. For this purpose two independently operating branchlines and endstations have been built. The
imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometre
resolution. Grating interferometry is currently implemented, adding the capability of measuring phase and small-angle
information. For tomography with increased resolution a full-field microscope providing 50nm spatial resolution with a
field of view of 100μm is being tested. The instrument provides a large working distance between optics and sample to
adapt a wide range of customised sample environments. On the coherence branch coherent diffraction imaging
techniques such as ptychography, coherent X-ray diffraction (CXRD) are currently developed for three dimensional
imaging with the highest resolution.
The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester
Branchline. The scientific applications cover a large area including bio-medicine, materials science, chemistry geology
and more. The present paper provides an overview about the current status of the beamline and the science addressed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.