X-ray Grating Talbot Interferometer (XGTI) is already routinely used for quantitative phase contrast imaging of soft tissue samples. XGTI can be realized using various measurement techniques, depending on the X-ray source used, the required spatial resolution and the speed of acquisition. The phase-stepping measurement technique, which is commonly used for XGTI data acquisition, needs multiple acquisitions for a single projection. For fast imaging the Moiré technique, a single-shot technique, is often preferred. However, it requires two gratings which increases the dose on the sample. We have therefore examined the Spatial Harmonic Imaging (SHI) technique which is low-dose and single-shot, using the I13-2 Diamond-Manchester Beamline at Diamond Light Source (DLS). The DLS I13-2 beamline is equipped with a Double Crystal Monochromator (DCM) and a Multi-Layer Monochromator (MLM) to deliver monochromatic beam, which work at the energy bandwidths (ΔE/E) of 10-4 and 10-2, respectively. However, the disadvantage of using these monochromators, especially for fast imaging, is loss of X-ray flux. It has already been shown that XGTI can work with an energy bandwidth (ΔE/E) of 10-1. Our aim is to develop a single phase grating interferometer with pink beam from an undulator source, with X-ray mirror optics and multiple absorption filters, to obtain maximum possible flux with sufficient coherence and monochromaticity. We demonstrate performance with optimized beamline parameters for a photon energy of 15 keV with some demonstrative image reconstructions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.