The shipment of the LSST Camera from SLAC National Lab in California to Rubin Observatory in Chile was completed successfully in spring 2024 after extensive road and flight testing of the Camera’s shipping container. Prior to final shipment, two local driving tests and one full test shipment from California to Chile were completed with a mass simulator to validate the performance of the wire rope isolator system by collecting data on acceleration events and vibration modes. This paper presents the results from the second test drive as well as the final shipment of the LSST Camera and associated hardware to the observatory.
The LSST Camera is the sole instrument for the Vera C. Rubin Observatory and consists of a 3.2 gigapixel focal plane mosaic with in-vacuum controllers, dedicated guider and wavefront CCDs, a three-element corrector whose largest lens is 1.55m in diameter, six optical interference filters covering a 320–1050 nm bandpass with an out-of-plane filter exchange mechanism, and camera slow control and data acquisition systems capable of digitizing each image in 2 seconds. In this paper, we describe the verification testing program performed throughout the Camera integration and results from characterization of the Camera’s performance. These include an electro-optical testing program, measurement of the focal plane height and optical alignment, and integrated functional testing of the Camera’s major mechanisms: shutter, filter exchange system and refrigeration systems. The Camera is due to be shipped to the Rubin Observatory in 2024, and plans for its commissioning on Cerro Pachon are briefly described.
The LSST Camera is a complex, highly integrated instrument for the Vera C. Rubin Observatory. Now that the assembly is complete, we present the highlights of the LSST Camera assembly: successful installation of all Raft Tower Modules (RTM) into the cryostat, integration of the world’s largest lens with the camera body, and successful integration and testing of the shutter and filter exchange systems. While the integration of the LSST Camera is a story of success, there were challenges faced along the way which we present: component failures, late design changes, and facility infrastructure issues.
The Rubin Observatory Commissioning Camera (ComCam) is a scaled down (144 Megapixel) version of the 3.2 Gigapixel LSSTCam which will start the Legacy Survey of Space and Time (LSST), currently scheduled to start in 2024. The purpose of the ComCam is to verify the LSSTCam interfaces with the major subsystems of the observatory as well as evaluate the overall performance of the system prior to the start of the commissioning of the LSSTCam hardware on the telescope. With the delivery of all the telescope components to the summit site by 2020, the team has already started the high-level interface verification, exercising the system in a steady state model similar to that expected during the operations phase of the project. Notable activities include a simulated “slew and expose” sequence that includes moving the optical components, a settling time to account for the dynamical environment when on the telescope, and then taking an actual sequence of images with the ComCam. Another critical effort is to verify the performance of the camera refrigeration system, and testing the operational aspects of running such a system on a moving telescope in 2022. Here we present the status of the interface verification and the planned sequence of activities culminating with on-sky performance testing during the early-commissioning phase.
Once assembly has been completed, the Rubin Observatory LSST Camera must be safely transported from SLAC National Accelerator Laboratory (SLAC) in California to the observatory facility in Chile. In order to preemptively verify the procedures and hardware involved in this critical shipment, a test shipment was performed with a fully representative Camera mass simulator. Despite several logistical complications, the Camera Shipping Container performed near-flawlessly on all legs of the journey from SLAC to the summit. Results from this preliminary shipment have guided further improvements to both hardware and the shipping process that will be implemented prior to the final Camera shipment.
In late 2021, the Rubin Observatory LSST Camera will be shipped from SLAC National Laboratory in California to Cerro Pach´on in Chile. The Camera shipping container, designed based on lessons learned from previous shipments, is a standard 20 ft steel container retrofitted with a vibration-isolation system and insulation. This modified container will be shipped with a Camera mass surrogate from SLAC to the summit in early 2021 in order to verify as many aspects of the procedure and hardware as possible. Results from this preliminary shipment will guide further improvements to the shipping process prior to the shipment of the LSST Camera.
Rubin Observatory’s Commissioning Camera (ComCam) is a 9 CCD direct imager providing a testbed for the final telescope system just prior to its integration with the 3.2-Gigapixel LSSTCam. ComCam shares many of the same subsystem components with LSSTCam in order to provide a smaller-scale, but high-fidelity demonstration of the full system operation. In addition, a pathfinder version of the LSSTCam refrigeration system is also incorporated into the design. Here we present an overview of the final as-built design, plus initial results from performance testing in the laboratory. We also provide an update to the planned activities in Chile both prior to and during the initial first-light observations.
The Vera C. Rubin Observatory is a joint NSF and DOE construction project with facilities distributed across multiple sites. These sites include the Summit Facility on Cerro Pachón, Chile; the Base Facility in La Serena, Chile; the Project and Operations Center in Tucson, AZ; the Camera integration and testing laboratories at SLAC National Accelerator Laboratory in Menlo Park, CA; and the data support center based at the National Center for SuperComputing Applications at Urbana-Champaign, IL. The Rubin Observatory construction Project has entered its system integration and testing phase where major subsystem components are coming together and being tested and verified at a system level for the first time. The system integration phase of the Project requires a closely coordinated and organized plan to merge, manage, and be able to adapt the complex set of subsystems and activities across the entire observatory as real effects are discovered. In this paper we present our strategy to successfully complete integration, test and commissioning of the systems making up the Rubin Observatory. We include discussion on (i) our strategy for integration activities and the verification of requirements (ii) a brief summary of construction status at the time of this paper, (iii) early integration activities that are used to mitigate risks including the use of the Rubin Observatory's commissioning camera (ComCam), planning for the integration, testing and verification of the primary science instrument - LSSTCam, and lastly, (v) Science Verification through short concentrated survey-like campaigns. Throughout this paper we identify where key performance metrics are addressed that directly impact the Rubin Observatory's 10{year Legacy Survey of Space and Time (LSST) science capabilities - e.g. image quality, telescope dynamics, alert latency, etc...
The Integration and Verification Testing and characterization of the expected performance of the Large Synoptic Survey Telescope (LSST) Camera is described. The LSST Camera will be the largest astronomical camera ever constructed, featuring a 3.2 Gpixel focal plane mosaic of 189 CCDs. In this paper, we describe the verification testing program developed in parallel with the integration of the Camera, and the results from our performance characterization of the Camera. Our testing program includes electro-optical characterization and CCD height measurements of the focal plane, at several steps during integration, as well as a complete functional and characterization program for the finished focal plane. It also includes a suite of functional tests of the major Camera mechanisms: shutter, filter exchange system and thermal control. Finally, we expect to test the fully assembled Camera prior to its scheduled completion and delivery to the LSST observatory in early calendar 2021.
The Large Synoptic Survey Telescope, under construction in Chile, is an 8.4 m optical survey telescope with a dedicated 3.2 Giga-pixel camera. The design and construction of the camera is spearheaded at SLAC National Accelerator Laboratory and here we present a general overview of the camera integration and test activities. An overview of the methodologies used for the planning and management of this subsystem will be given, along with a high-level summary of the status of the major pieces of I&T hardware. Finally a brief update will be given on the current state of the LSST Camera integration and testing program.
The Integration and Verification Testing of the Large Synoptic Survey Telescope (LSST) Camera is described. The LSST Camera will be the largest astronomical camera ever constructed, featuring a 3.2 giga-pixel focal plane mosaic of 189 CCDs with in-vacuum controllers and readout, dedicated guider and wavefront CCDs, a three element corrector with a 1.6-meter diameter initial optic, six optical filters covering wavelengths from 320 to 1000 nm with a novel filter exchange mechanism, and camera-control and data acquisition capable of digitizing each image in two seconds. In this paper, we describe the integration processes under way to assemble the Camera and the associated verification testing program. The Camera assembly proceeds along two parallel paths: one for the focal plane and cryostat and the other for the Camera structure itself. A range of verification tests will be performed interspersed with assembly to verify design requirements with a test-as-you-build methodology. Ultimately, the cryostat will be installed into the Camera structure as the two assembly paths merge, and a suite of final Camera system tests performed. The LSST Camera is scheduled for completion and delivery to the LSST observatory in 2020.
KEYWORDS: Large Synoptic Survey Telescope, Imaging systems, System integration, Cameras, Telescopes, Observatories, Data processing, Interfaces, Control systems, Computing systems
The Commissioning Phase of the LSST Project is the final stage in the combined NSF and DOE funded LSST construction project. The LSST commission phase is planned to start early in 2020 and be completed near the end of 2022, ending with the LSST Observatory system ready to start survey operations. Commissioning includes the assembly of the three principal subsystems (Telescope, Camera and Data Management) into the LSST Observatory System and the integration and test (AI&T) efforts as well as the science verification activities. The LSST System AI&T and Commissioning Plan is driven by a combination of engineering and scientifically oriented activities to show compliance with technical requirements and readiness to conduct science operations (acquiring data, processing data, and serving data and derived data products to users). LSST System AI&T and Commissioning will be carried out over four phases of activity: Phase-0) Pre-commissioning preparations (work breakdown structure; Phase-1) Early System AI&T with a commissioning camera (ComCam); Phase-2) Full System AI&T when the LSST Science Camera is shipped to Chile, integrated on the telescope and the data management system (DMS) is exercised with full scale data; and Phase-3) Science Validation where a series of mini-surveys are used to characterize the system with respect to the survey performance specifications in the SRD/LSR and functionality of the, leading to operations readiness. The Science Validation Phase concludes with an Operations Readiness Review (ORR).
The LSST System Assembly, Integration and Test and Commissioning effort has been planned out over several phases The first phase of commissioning under Early AI&T is designed to test and verify the system level interfaces using ComCam – a 144Mpixel imager utilizing the same control components as the full science camera. During this period, the telescope active optics system will be brought into compliance with system requirements; the scheduler will be exercised and all safety checks verified for autonomous operation; and early DM algorithm testing will be performed with on-sky data from ComCam using a commissioning computing cluster at the Base Facility.
The second phase of activities under Full System AI&T is designed to complete the technical integration of the three principal subsystems and EPO, show full compliance with system level requirements as detailed in the Observatory System Specifications and system level interface control documents, and provide full scale data for further DM/EPO software and algorithmic testing and development. System level requirements that flow directly to subsystems without any further derivation will be tested for compliance, at the subsystem level and below, under the supervision of Project Systems Engineering. This document includes the general approach and goals for these tests. It is expected that roughly four (4) months into the Full System AI&T phase the telescope and camera will be fully integrated and routinely producing science grade images over the full field of view (FOV), at which point “System First Light” will be declared. Following System First Light will be an intensive data acquisition period design to test the image processing pipelines and validate the derived science products that are to be delivered by the LSST survey.
The third and final phase of activities under Science Validation is designed to fully characterize the system performance specifications detailed in LSST System Requirements Document and the range of demonstrated performance per the LSST Science Requirements. These activities are based on the measured “On-Sky” performance and informed simulations of the LSST system.
In this paper we describe the inputs and assumptions to the commissioning plan, a summary of the activities in each phase, management strategies and expected outcomes.
The Large Synoptic Survey Telescope (LSST) Commissioning Camera (ComCam) is a smaller, simpler version of the full LSST camera (LSSTCam). It uses a single raft of 9 (instead of twenty-one rafts of 9) 4K x 4K LSST Science CCDs, has the same plate scale, and uses the same interfaces to the greatest extent possible. ComCam will be used during the Project’s 6-month Early Integration and Test period beginning in 2020. Its purpose is to facilitate testing and verification of system interfaces, initial on-sky testing of the telescope, and testing and validation of Data Management data transfer, infrastructure and algorithms prior to the delivery of the full science camera.
The LSST Camera focal plane comprises twenty-one raft tower modules (RTMs), each with nine CCD sensors and their associated electronics. RTMs are assembled at Brookhaven National Lab and shipped to SLAC National Lab, where they must be re-verified before being assembled into the full focal plane. The process for accepting an RTM at SLAC has been thoroughly documented, including unpacking a raft from its shipping container, verifying aliveness of the electrical connections, performing metrology and electro-optical testing in an environment similar to the full Camera, and finally storing the RTM until it can be installed into the LSST Camera
We present an overview of the Integration and Verification Testing activities of the Large Synoptic Survey Telescope (LSST) Camera at the SLAC National Accelerator Lab (SLAC). The LSST Camera, the sole instrument for LSST and under construction now, is comprised of a 3.2 Giga-pixel imager and a three element corrector with a 3.5 degree diameter field of view. LSST Camera Integration and Test will be taking place over the next four years, with final delivery to the LSST observatory anticipated in early 2020. We outline the planning for Integration and Test, describe some of the key verification hardware systems being developed, and identify some of the more complicated assembly/integration activities. Specific details of integration and verification hardware systems will be discussed, highlighting some of the technical challenges anticipated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.