KEYWORDS: Optical simulations, Holography, Near field, Telescopes, Sensors, Near field optics, Optical testing, Signal detection, Beam analyzers, Staring arrays
The Simons Observatory is a ground-based telescope array located at an elevation of 5200 meters, in the Atacama Desert in Chile, designed to measure the temperature and polarization of the cosmic microwave background. It comprises four telescopes: three 0.42-meter small aperture telescopes (SATs), focused on searching for primordial gravitational waves, and one 6-meter large aperture telescope, focused on studying small-scale perturbations. Each of the SATs will field over 12,000 TES bolometers, with two SATs sensitive to both 90 and 150GHz frequency bands (SAT-MF1, and SAT-MF2), while the third SAT is sensitive to 220 and 280GHz frequency bands. Prior to its deployment in 2023, the optical properties of SAT-MF1 were characterized in the laboratory. We report here on measurements of beam maps acquired using a thermal source on SAT-MF1, along with measurements of near-field beam maps using a holographic method that enables characterization of both the amplitude and phase of the beam response, yielding an estimate of the far-field radiation pattern received by the telescope. We find that the near-field half-width-half-maximum (HWHM) requirements are met across the focal plane array for the 90GHz frequency band, and through most of the focal plane array for the 150GHz frequency band. Namely, the mean of the bandpass averaged HWHM of the edge-detector universal focal plane modules match the simulated HWHM to 10.4%, with the discrepancy caused by fringing in the simulation. The measured radial profile of the beams matches simulations to within 2dB from the beam center to at least the -10dB level. Holography estimates of the far-field 90GHz beams match the full-width-half-maximum from simulation within 1%, and the beam radial profiles deviate by less than 2dB inside the central lobe. The success of the holography and thermal beam map experiments confirmed the optical performance were sufficient to meet the science requirements. SAT-MF1 was deployed to Chile in June, 2023. On-site observations are currently underway.
The Simons Observatory (SO) group of instruments are together pursuing a major step forward in the ground-based study of the Cosmic Microwave Background (CMB). With one 6 m large-aperture telescope and three 0.4 m small-aperture telescopes (SATs), SO will strive to recover faint CMB polarization signals at a wide range of angular scales and across six frequency bands inside of atmospheric transmission windows spanning the range 27 GHz to 280 GHz. The first instrument to record celestial light is the first of two mid-frequency SATs, SAT MF-1, with over 3,000 dichroic pixels sensitive to two frequency bands centered at 90 and 150 GHz. This instrument began observing in October 2023, and features a cryogenically-cooled polarization modulator consisting of a spinning half-wave plate, a set of three silicon lenses with metamaterial anti-reflection coating, and a focal plane of seven modules referred to as universal focal-plane modules (UFMs), each containing 1,720 AlMn transition-edge sensor (TES) bolometers coupled to a 100 mK bath. In this proceedings, we report on initial efforts to calibrate the TES bolometer response to electrical and optical signals and preliminary characterization of possible confounding signals like scan-synchronous pickup. We comment on how these elements pertain to the analysis of systematic errors relating to the ultimate goal of the SO SAT program: the further constraint of the tensor-to-scalar ratio, r, and the possibility of primordial gravitational waves generated in the early universe by a period of inflation.
The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In this dark configuration we are able to characterize many elements of the instrument without contributions from atmospheric noise. Here we show this noise is below the required upper limit and its features are well described with a simple noise model. Maps produced using this noise model have properties that are in good agreement with the white noise levels of our dark data. Additionally, we show that our nominal scan strategy has a minimal effect on the noise when compared to the noise when the telescope is stationary.
The Simons Observatory (SO) is a Cosmic Microwave Background experiment located in the Atacama Desert in Chile. SO consists of three small aperture telescopes (SATs) and one large aperture telescope (LAT) with a total of 60,000 detectors in six frequency bands.1 As an observatory, SO encompasses hundreds of hardware components simultaneously running at different readout rates—all separate from its 60,000 detectors on-sky and their metadata. We provide an overview of commissioning SO’s data acquisition software system for SAT-MF1, the first SAT deployed to the Atacama site. Additionally, we share insights from deploying data access software for all four telescopes, detailing how performance limitations affected data loading and quality investigations, which led to site-compatible software improvements.
This conference presentation was prepared for the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI conference at SPIE Astronomical Telescopes + Instrumentation, 2022.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.