This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The Simons Observatory: in-lab optical testing and validation for the first small aperture telescope
The integration and testing program for the Simons Observatory Large Aperture Telescope optics tubes
The large aperture telescope receiver (LATR) is coupled to the SO six-meter crossed Dragone telescope and will be 2.4 m in diameter, weigh over 3 metric tons, and have five cryogenic stages (80 K, 40 K, 4 K, 1 K and 100 mK). The LATR is coupled to the telescope via 13 independent optics tubes containing cryogenic optical elements and detectors. The cryostat will be cooled by two Cryomech PT90 (80 K) and three Cryomech PT420 (40 K and 4 K) pulse tube cryocoolers, with cooling of the 1 K and 100 mK stages by a commercial dilution refrigerator system. The secondo component, the small aperture telescope (SAT), is a single optics tube refractive cameras of 42 cm diameter. Cooling of the SAT stages will be provided by two Cryomech PT420, one of which is dedicated to the dilution refrigeration system which will cool the focal plane to 100 mK. SO will deploy a total of three SATs.
In order to estimate the cool down time of the camera systems given their size and complexity, a finite difference code based on an implicit solver has been written to simulate the transient thermal behavior of both cryostats. The result from the simulations presented here predict a 35 day cool down for the LATR. The simulations suggest additional heat switches between stages would be effective in distribution cool down power and reducing the time it takes for the LATR to reach its base temperatures. The SAT is predicted to cool down in one week, which meets the SO design goals.
BLAST-TNG features three detector arrays operating at wavelengths of 250, 350, and 500 m (1200, 857, and 600 GHz) comprised of 918, 469, and 272 dual-polarization pixels, respectively. Each pixel is made up of two crossed microwave kinetic inductance detectors (MKIDs). These arrays are cooled to 275 mK in a cryogenic receiver. Each MKID has a different resonant frequency, allowing hundreds of resonators to be read out on a single transmission line. This inherent ability to be frequency-domain multiplexed simplifies the cryogenic readout hardware, but requires careful optical testing to map out the physical location of each resonator on the focal plane. Receiver-level optical testing was carried out using both a cryogenic source mounted to a movable xy-stage with a shutter, and a beam-filling, heated blackbody source able to provide a 10-50 C temperature chop. The focal plane array noise properties, responsivity, polarization efficiency, instrumental polarization were measured. We present the preflight characterization of the BLAST-TNG cryogenic system and array-level optical testing of the MKID detector arrays in the flight receiver.
View contact details
No SPIE Account? Create one