Purpose: Physics-informed neural networks (PINNs) and computational fluid dynamics (CFD) have both demonstrated an ability to derive accurate hemodynamics if boundary conditions (BCs) are known. Unfortunately, patient-specific BCs are often unknown, and assumptions based upon previous investigations are used instead. High speed angiography (HSA) may allow extraction of these BCs due to the high temporal fidelity of the modality. We propose to investigate whether PINNs using convection and Navier-Stokes equations with BCs derived from HSA data may allow for extraction of accurate hemodynamics in the vasculature.
Materials and Methods: Imaging data generated from in vitro 1000 fps HSA, as well as simulated 1000 fps angiograms generated using CFD were utilized for this study. Calculations were performed on a 3D lattice comprised of 2D projections temporally stacked over the angiographic sequence. A PINN based on an objective function comprised of the Navier-Stokes equation, the convection equation, and angiography-based BCs was used for estimation of velocity, pressure and contrast flow at every point in the lattice.
Results: Imaging-based PINNs show an ability to capture such hemodynamic phenomena as vortices in aneurysms and regions of rapid transience, such as outlet vessel blood flow within a carotid artery bifurcation phantom. These networks work best with small solution spaces and high temporal resolution of the input angiographic data, meaning HSA image sequences represent an ideal medium for such solution spaces.
Conclusions: The study shows the feasibility of obtaining patient-specific velocity and pressure fields using an assumption-free data driven approach based purely on governing physical equations and imaging data.Methods: The prototype CMOS-based CBCT involves a DALSA Xineos3030 detector (99 μm pixels) with 400 μm-thick CsI scintillator and a compact 0.3 FS rotating anode x-ray source. We compare the performance of CMOS CBCT to an a- Si:H FPD scanner built on a similar gantry, but using a Varian PaxScan2530 detector with 0.137 mm pixels and a 0.5 FS stationary anode x-ray source. Experimental studies include measurements of Modulation Transfer Function (MTF) for the detectors and in 3D image reconstructions. Image quality in clinical scenarios is evaluated in scans of a cadaver ankle. Metrics of trabecular microarchitecture (BV/TV, Bone Volume/Total Volume, TbSp, Trabecular Spacing, and TbTh, trabecular thickness) are obtained in a human ulna using CMOS CBCT and a-Si:H FPD CBCT and compared to gold standard μCT.
Results: The CMOS detector achieves ~40% increase in the f20 value (frequency at which MTF reduces to 0.20) compared to the a-Si:H FPD. In the reconstruction domain, the FWHM of a 127 μm tungsten wire is also improved by ~40%. Reconstructions of a cadaveric ankle reveal enhanced modulation of trabecular structures with the CMOS detector and soft-tissue visibility that is similar to that of the a-Si:H FPD system. Correlations of the metrics of bone microarchitecture with gold-standard μCT are improved with CMOS CBCT: from 0.93 to 0.98 for BV/TV, from 0.49 to 0.74 for TbTh, and from 0.9 to 0.96 for TbSp.
Conclusion: Adoption of a CMOS detector in extremity CBCT improved spatial resolution and enhanced performance in metrics of bone microarchitecture compared to a conventional a-Si:H FPD. The results support development of clinical applications of CMOS CBCT in quantitative imaging of bone health.
View contact details