This study provides a comprehensive and up-to-date portrait of the skills desired by the Canadian photonics industry. To accomplish this, we investigate Canadian job postings on popular employment websites in the fields of optics and photonics to characterize clusters of skills in high demand. We supplement this investigation with an analysis of responses to a questionnaire distributed to over 300 companies with Canadian operations. We present the resulting information in a manner to support evidence-based policy decisions, such as recommendations for improvements to educational programs to better meet the training needs conveyed by the Canadian photonics industry.
The goal of SiEPICfab is to conduct research in the fabrication of silicon photonic devices and photonic integrated circuits, and to make leading-edge silicon photonic manufacturing accessible to Canadian and international academics and industry. SiEPICfab builds on the success of the Silicon Electronic Photonic Integrated Circuits (SiEPIC) program, which has been offering research training workshops since 2008, by adding a fabrication facility “fab”. We have developed a rapid prototyping facility to support a complete ecosystem of companies involved in silicon photonics product development, including modelling, design, library development, fabrication, test, and packaging of silicon photonics. SiEPICfab allows designers to rapidly complete design-fabricate-test cycles, with technologies such as sub-wavelength sensors, PN junction ring modulators, silicon defect-based detectors, single photon detectors, single photon sources, and photonic wire bond integration of lasers and optical fibres.
In this work, we experimentally demonstrate a FSR-free, MRR-based, coupling modulator that integrates a bent, grating-based contra-directional-coupler (contra-DC) into a microring cavity to achieve an FSR-free response at its through port. Our modulator suppresses the amplitude response at all but one resonance, operating mode (hence, has an FSR-free response). In our modulator, coupling modulation is used and is achieved by modulating a relatively short, 210 μm long, p-n junction phase-shifter in a two-point coupler (which forms the drop-port coupler of the MRR). We demonstrate open eyes at 2.5 Gbps and discuss how the effects of DUV lithography on the contra-DC limited the electro-optic bandwidth of the fabricated modulator to 2.6 GHz. In these proceedings, we also cover details of the device design and the small and large signal characterization of the device, including an analysis of the effect of lithography on the “as-fabricated" device performance. We also discuss how to significantly improve the electro-optic bandwidth in future implementations by accounting for these lithographic effects in the device design flow and layout.
Vernier effect, series-coupled microring resonators (MRRs) are used to extend the free-spectral-range (FSR) of MRRs. In this work we demonstrate integrating two MRRs in a compact Vernier configuration (compact as compared to previously demonstrated Vernier effect devices). our design was realized by using two waveguide crossings to form a major, outer ring that was coupled to a minor ring nested within the major ring. The ratio of the path length of the major ring to the path length of minor ring was 5:2. The spectral response of the device had an FSR of 27.94 nm, a drop port 3 dB bandwidth of 0.87 nm, a minimum extinction ratio of 16.1 dB, a minimum interstitial peak suppression of 10.6 dB, and a footprint of only 540 μm2 .
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.