We have proposed virtual-phase-conjugation-based optical tomography (VPC-OT) using a virtual phase conjugation technology for single-shot and three-dimensional optical tomography. In VPC-OT, a random-spatial-phase-modulated probe beam is irradiated to the sample to be measured, and the complex amplitude of the signal composed of a superimposition of light reflected from each layer of the sample is measured. A three-dimensional tomogram of intensity and phase is obtained by reproducing the measured complex amplitude using a phase conjugate wave in a virtual optical system built in a computer. At this time, by changing the parameters of the virtual optical system, it becomes possible to obtain information of various tomographic planes from the data obtained with a single measurement. In the ideal virtual phase conjugate reproduction process, free space propagation can be assumed; however, in the actual measurement, due to the distortion of the waves and the surroundings of the sample to be measured, a mismatch will occur in modulation and demodulation, and the separation accuracy between different tomographic planes would be degraded. We perform an experiment to clarify the characteristics of VPC-OT in this situation. In this experiment, three-dimensional optical tomography is performed using an etching glass having a periodic structure of 30 μm as a sample, and the phase distribution is measured quantitatively. Furthermore, by placing a cover glass in front of the object and performing the same measurement, we discuss the characteristics and performance of VPC-OT when there is an optical distortion around the sample to be measured.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.