The accelerated pace of the semiconductor industry in recent years is putting a strain on existing dimensional metrology
equipments (such as CDSEM, AFM, Scatterometry) to keep up with ever-increasing metrology challenges. However, a
revolution appears to be forming with the recent advent of Hybrid Metrology (HM) - a practice of combining
measurements from multiple equipment types in order to enable or improve measurement performance. In this paper we
extend our previous work on HM to measure advanced 1X node layers - EUV and Negative Tone Develop (NTD) resist
as well as 3D etch structures such as FinFETs. We study the issue of data quality and matching between toolsets
involved in hybridization, and propose a unique optimization methodology to overcome these effects. We demonstrate
measurement improvement for these advanced structures using HM by verifying the data with reference tools (AFM,
XSEM, TEM). We also study enhanced OCD models for litho structures by modeling Line-edge roughness (LER) and
validate its impact on profile accuracy. Finally, we investigate hybrid calibration of CDSEM to measure in-die resist line
height by Pattern Top Roughness (PTR) methodology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.