Through an innovative public-private partnership, a new generation of high-fidelity imaging spectrometers has been designed for the detection and measurement of methane (CH4) and carbon dioxide (CO2) plumes from super-emitters to help improve accounting and enable reduction of greenhouse gases in the Earth’s atmosphere. Two identical instruments, built concurrently at NASA Jet Propulsion Laboratory (referred to by JPL as the Carbon Plume Mapper project “CPM”) and Planet Labs as part of the Carbon Mapper Coalition, will measure the spectral range of 400 – 2500 nm with a spectral sampling of 5.0 nm. The identical optical design comprises a three-mirror anastigmat (TMA) telescope and Dyson form spectrometer which reduces volume and mass for a fast (F/1.8) optical system. The instruments will be integrated into Planet-built Tanager satellites and launched into low-Earth orbit (LEO). This work describes the assembly and alignment of the two identical instruments. At the subsystem level, both instruments follow the same procedure. For telescope alignment, the mirrors are first coarsely aligned with a coordinate measuring machine (CMM) and then finely aligned in a double-pass interferometer setup. The spectrometer subsystem is aligned onaxis using a commercial lens alignment instrument for precise, non-contact measurements. The telescope and spectrometer alignment results and performance are presented and compared. At the system level, the procedures deviate due to the separate and unique optical ground support equipment (OGSE) configurations utilized by JPL and Planet to implement the same instrument design. Both end-to-end optical alignment configurations are discussed, and the final CPM performance is shown with a focus on the five key and driving imaging spectrometer performance requirements.
Through an innovative public-private partnership, a new generation of high-fidelity hyperspectral imaging spectrometers has been designed to pinpoint, quantify, and track methane (CH4) and carbon dioxide (CO2) point-source emissions from super-emitters to help enable reduction of greenhouse gases in the Earth’s atmosphere. Two identical instruments, built concurrently at NASA Jet Propulsion Laboratory (referred to by JPL as the Carbon Plume Mapper project, CPM) and Planet Labs as part of the Carbon Mapper Coalition, feature an identical design which comprises a glass-ceramic, three-mirror anastigmat (TMA) telescope, held in place via a composite metering structure, and Dyson form spectrometer which reduces volume and mass for a fast (F/1.8) optical system. The telescope has a focal length and cross-track field of view (FOV) of 400 mm and 2.6 deg, respectively. Operating in the 400 – 2500 nm spectral range with 5.0 nm sampling, this spectrometer design has the sensitivity and resolution required to meet the demanding needs of space-based detection and quantification of CO2 and CH4 emissions. This work describes the instruments’ optomechanical configuration.
The Carbon Plume Mapper (CPM) instrument is a high-fidelity imaging spectrometer developed to pinpoint, quantify, and track methane (CH4) and carbon dioxide (CO2) point source emissions to help enable reduction of greenhouse gases in the Earth’s atmosphere. CPM will operate over the spectral range of 400 – 2500 nm with a spectral sampling of 5.0 nm. CPM will be integrated into an industry partner spacecraft bus and launched into low-Earth orbit (LEO). The optical design comprises a three-mirror anastigmat (TMA) telescope and Dyson form spectrometer which reduces volume and mass for a fast (F/1.8) optical system. An overview of the CPM optical design, development, and current status is discussed.
Starting in 2023, the Carbon Mapper public-private partnership will launch two imaging spectrometers into low earth orbit as the first demonstration satellites for a larger, emerging constellation. This mission is a critical collaboration between several partners including Planet, Carbon Mapper, Arizona State University, NASA’s Jet Propulsion Laboratory, the University of Arizona, the High Tide Foundation, California Air Resources Board, and the Rocky Mountain Institute. This hyperspectral constellation will complement Planet’s existing high-spatial and high-temporal mission lines and increase the ability to measure and monitor the impacts of climate change on our planet and tackle dynamic, wide-ranging and complex challenges such as sustainability. Each satellite is equipped with a 400 - 2500 nm hyperspectral imaging system capable of addressing a wide range of applications. The core mission for the Carbon Mapper Mission is to monitor climate risks (methane, CO2) but it has capacity to collect data for other sectors such as Defense, Intelligence, Agriculture, Mining, and others. The Carbon Mapper Mission is a tasked system and is designed to be responsive to dynamic events where analysis in a matter of days or hours may be important. In this paper, we provide an overview of the anticipated technical capabilities of the system and discuss applications for the Defense and Intelligence communities. We will also outline how the Carbon Mapper Mission can work in conjunction with the rest of the Planet constellations to enable unique fusion products.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.