Robert Magnusson is the Texas Instruments Distinguished University Chair in Nanoelectronics and Professor of Electrical Engineering at the University of Texas at Arlington. He received the Ph. D. degree in Electrical Engineering from the Georgia Institute of Technology.
After working in industry for 5 years, he joined the faculty at UT-Arlington. He was Professor and Chair of the Department of Electrical Engineering at UT-Arlington during 1998-2001 and Professor and Head of the Electrical and Computer Engineering Department at the University of Connecticut 2001-2006 and Professor there 2006-2008.
He directs the UT-Arlington Nanophotonics Device Group. Current theoretical and experimental research addresses periodic nanostructures, nanolithography, nanophotonics, nanoelectronics, nanoplasmonics, and optical bio- and chemical sensors.
He is the Co-founder and Chief Technical Officer of Resonant Sensors Incorporated, a company that provides next-generation optical sensor systems for pharmaceutical and biotech customers.
He has published some 420 journal and conference papers and has nearly 30 issued and pending patents. He is a Fellow of the Optical Society and SPIE, a Life Fellow of IEEE, and a Charter Fellow of the National Academy of Inventors.
After working in industry for 5 years, he joined the faculty at UT-Arlington. He was Professor and Chair of the Department of Electrical Engineering at UT-Arlington during 1998-2001 and Professor and Head of the Electrical and Computer Engineering Department at the University of Connecticut 2001-2006 and Professor there 2006-2008.
He directs the UT-Arlington Nanophotonics Device Group. Current theoretical and experimental research addresses periodic nanostructures, nanolithography, nanophotonics, nanoelectronics, nanoplasmonics, and optical bio- and chemical sensors.
He is the Co-founder and Chief Technical Officer of Resonant Sensors Incorporated, a company that provides next-generation optical sensor systems for pharmaceutical and biotech customers.
He has published some 420 journal and conference papers and has nearly 30 issued and pending patents. He is a Fellow of the Optical Society and SPIE, a Life Fellow of IEEE, and a Charter Fellow of the National Academy of Inventors.
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Perfect reflection by dielectric subwavelength particle arrays: causes, implications, and technology
This course addresses analysis, applications, and fabrication technology of diffractive elements with subwavelength feature sizes. The principal methods of modeling light propagation in periodic layers are introduced. Patterning methods such as interference lithography and electron-beam lithography are presented along with main processing techniques. Numerous applications realized with subwavelength diffractive elements are presented. These include antireflection surfaces, diffractive lenses, optical interconnects, photonic crystals, polarization components, memory readout concepts, as well as optical filters, lasers, and biosensors based on resonant waveguide gratings. Examples of actual fabricated devices and their measured characteristics are emphasized throughout the course. A software package useful for design of one- or two-layer periodic elements will be provided to the attendees.
View contact details
No SPIE Account? Create one