A phantom is developed to replicate the spatial distribution of optical and acoustic breast properties. Blood-carrying channels, with ability to tune oxygenation, make the phantom suited for investigating the capability to extract oxygen saturation.
We present a novel processing technique to retrieve total haemoglobin concentrations with spectroscopic optical coherence tomography data based on numerical optimization of the optical density. We validated our method with ex-vivo human whole blood.
Significance: During the development and early testing phases of new photoacoustic (PA) breast imaging systems, several choices need to be made in aspects of system design and measurement sequences. Decision-making can be complex for state-of-the-art systems such as 3D hybrid photoacoustic-ultrasound (PA-US) breast imagers intended for multispectral quantitative imaging. These systems have a large set of design choices and system settings that affect imaging performance in different ways and often require trade-offs. Decisions have to be made carefully as they can strongly influence the imaging performance.
Aim: A systematic approach to assess the influence of various choices on the imaging performance in carefully controlled laboratory situations is crucial before starting with human studies. Test objects and phantoms are used for first imaging studies, but most reported structures have a 2D geometry and are not suitable to assess all the image quality characteristics (IQCs) of 3D hybrid PA-US systems.
Approach: Our work introduces a suite of five test objects designed for hybrid PA-US systems with a 3D detection aperture. We present the test object designs and production protocols and explain how they can be used to study various performance measures. To demonstrate the utility of the developed objects, measurements are made with an existing tomographic PA system.
Results: Two test objects were developed for measurements of the US detectors’ impulse responses and light distribution on the breast surface. Three others were developed to assess image quality and quantitative accuracy of the PA and US modes. Three of the five objects were imaged to demonstrate their use.
Conclusions: The developed test objects allow one to study influences of various choices in design and system settings. With this, IQCs can be assessed as a function of measurement sequence settings for the PA and US modes in a controlled way. Systematic studies and measurements using these objects will help to optimize various system settings and measurement protocols in laboratory situations before embarking on human studies.
Significance: Recovering accurate oxygenation estimations in the breast with quantitative photoacoustic tomography (QPAT) is not straightforward. Accurate light fluence models are required, but the unknown ground truth of the breast makes it difficult to validate them. Phantoms are often used for the validation, but most reported phantoms have a simple architecture. Fluence models developed in these simplistic objects are not accurate for application on the complex tissues of the breast.
Aim: We present a sophisticated breast phantom platform for photoacoustic (PA) and ultrasound (US) imaging in general, and specifically for QPAT. The breast phantom is semi-anthropomorphic in distribution of optical and acoustic properties and contains wall-less channels with blood.
Approach: 3D printing approaches are used to develop the solid 3D breast phantom from custom polyvinyl chloride plastisol formulations and additives for replicating the tissue optical and acoustic properties. A flow circuit was developed to flush the channels with bovine blood with a controlled oxygen saturation level. To showcase the phantom’s functionality, PA measurements were performed on the phantom with two oxygenation levels. Image reconstructions with and without fluence compensation from Monte Carlo simulations were analyzed for the accuracy of oxygen saturation estimations.
Results: We present design aspects of the phantom, demonstrate how it is developed, and present its breast-like appearance in PA and US imaging. The oxygen saturations were estimated in two regions of interest with and without using the fluence models. The fluence compensation positively influenced the SO2 estimations in all cases and confirmed that highly accurate fluence models are required to minimize estimation errors.
Conclusions: This phantom allows studies to be performed in PA in carefully controlled laboratory settings to validate approaches to recover both qualitative and quantitative features sought after in in-vivo studies. We believe that testing with phantoms of this complexity can streamline the transition of new PA technologies from the laboratory to studies in the clinic.
Test-objects for use in hybrid photoacoustic-ultrasound systems with a 3D geometry are introduced. They are designed to assess the system’s spatial resolution, imaging depth and image reconstruction algorithms. Considering the latter, one test-object is designed to test the robustness of algorithms when encountering heterogeneity in sound speeds. A further test-object is designed to test the accuracy of blood oxygenation estimation in image reconstruction. Finally, a novel semi-anthropomorphic photoacoustic-ultrasound breast phantom containing tumors and blood vessels is introduced. This phantom is equipped with adaptable blood oxygenation levels and is a valuable tool for the optimization and characterization of the imaging parameters.
A decreased hemoglobin concentration (tHb) in blood (anemia) is associated with impaired oxygen delivery to organs, which can result in organ damage and heart failure. Currently, tHb analysis requires invasive methods (e.g. a fingerstick), which are time consuming and cause discomfort to the patient. Using optical spectroscopy, the tHb can be estimated by quantifying light absorption in blood. However, the accuracy of current noninvasive optical techniques for tHb quantification is limited by the background attenuation of skin and the unknown blood volume fraction in the total optical probing volume.
Spectroscopic optical coherence tomography (sOCT) allows for quantitative measurements of the optical attenuation in a confined measurement volume, potentially enabling non-invasive estimation of the hemoglobin concentration within individual blood vessels. Although multiple studies have shown that sOCT is capable of quantifying localized oxygen saturation, quantification of the tHb has not yet been reported for physiologically relevant concentrations.
With a home-built visible-light sOCT system we quantified optical attenuation in the visible wavelength range (450–600nm). Implementation of both zero-delay acquisition and focus tracking optimized system sensitivity and ensured that the measured attenuation is only affected by the attenuation of the sample itself.
We validated our method ex-vivo on human whole blood from healthy volunteers (tHb within 12-18 g/dL). The hematocrit was varied to cover the entire pathophysiological range (tHb within 9-21 g/dL) by either dilution with PBS, or plasma removal. Our system quantified the tHb in whole blood throughout the entire pathophysiological range with an accuracy of 10%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.