Inspired by dominant flight of the natural flyers and driven by civilian and military purposes, micro air vehicle (MAV) has been developed so far by passive wing control but still pales in aerodynamic performance. Better understanding of flapping wing flight mechanism is eager to improve MAV’s flight performance. In this paper, a simple and effective 4D metrology technique to measure full-field deformation of flapping membrane wing is presented. Based on fringe projection and 3D Fourier analysis, the fast and complex dynamic deformation, including wing rotation and wing stroke, of a flapping wing during its flight can be accurately reconstructed from the deformed fringe patterns recorded by a highspeed camera. An experiment was carried on a flapping-wing MAV with 5-cm span membrane wing beating at 30 Hz, and the results show that this method is effective and will be useful to the aerodynamicist or micro aircraft designer for visualizing high-speed complex wing deformation and consequently aid the design of flapping wing mechanism to enhanced aerodynamic performance.
In this paper, we examine the effect of non-sinusoidal flapping motion caused by click mechanism and compared it to a sinusoidal flapping motion. Many had observed and described the click mechanism through insect’s anatomy. Through theoretical models and numerical studies, some dismissed its effect on flapping efficiency, while others predicted better thrust generation with it. Without concrete experimental proof, the argument is hypothetical. This work showed the benefits of the click mechanism by experiment, with its simple compliant thorax designed using carbon fiber and polyimide film. The click mechanism system is designed like a thin elastic plate which was compressed until bent, with its center point stable at either the top most extreme or the bottom most extreme positions. ‘Clicking’ occurs when the plate center is moved forcibly from one extreme to the other. Before it passes the midpoint, the plate center moves slowly as it tends to return to the original extreme and resist the displacement. When moved passed the midpoint, it now tends to move to the other extreme, together with the external force, resulting in a fast, snapping ‘click’ to the other extreme. Hence, the clicking prototype showed a sudden high increase in wing flap speed when it is moved beyond midpoint towards the other end. It also showed quick wing reversal and is able to produce consistent large wing stroke (~115°). The clicking prototype, which weighs 3.78g, produces a higher thrust of 2.9g at a flapping frequency of 19Hz. In comparison, a 3.26g prototype of sinusoidal flapping motion with similar design configuration produces only 2.2g of thrust at 19Hz.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.