Recently we developed the open-source FlexNIRS: a battery-operated, wireless, wearable oximeter whose self-calibrating geometry allows measurements of oxygen saturation in tissue. The first implementation of the device operating at 100 Hz has been validated and is enrolled in several measurement campaigns across different research laboratories. A recent firmware upgrade provides 266 Hz sampling rate, and hardware modifications provide improved form factor, wearability, and multi-modal acquisition. The new version is currently adopted in multiple clinical measurement campaigns focusing on pulsatile component analysis. We will present the instrument performance, its recent and future upgrades, and the applications where the device is currently in use.
We present a novel system based on a four-stage fiber delay network designed for multistate time-domain diffuse correlation spectroscopy, providing three output fibers per each delay state. The fiber delay network is coupled to a custom pulsed laser at 1064 nm and four SNSPDs, allowing to measure up to 12 independent source-detector pairs simultaneously. The system delivers 300ps optical pulses, 100 mW average optical power per fiber output, operates at 62.5 MHz and each cycle provides 4 laser pulses displaced of 4 ns. The instrument has been validated on healthy human subject during functional tasks, proving state-of-the-art performance.
When monitoring patients with a skin contact sensor it is important to ensure that this is properly attached to the skin. This is important both for patient safety and data quality. We have developed a skin-contact sensitive technology that exploits the capacitive coupling of the sensor to detect the quality of the attachment to the subject’s skin and ensure galvanic isolation between patient and sensor. The developed technology can be easily embedded in any optical probe design without adding weight of bulkiness to the probe and provides the capability to detect optical probe displacements and alert user/operators/ hospital staff.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.