Photopolymers are special polymeric materials that can be irradiated with light to form polymer structures. It is widely used in the fields of 3D printing, anti-counterfeiting and information storage. In today's relatively mature holographic storage technology, high-density volume holographic data storage requires storage materials with a high response rate, high effective storage density and optical transparency, and high signal-to-noise ratio, etc. For this reason, storage materials have been studied in various fields. Phenanthrenequinone (PQ)/poly(methyl methacrylate) (PMMA) materials are a choice for holographic storage. By modifying the polymer substrate of the lamellar PQ/PMMA holographic polymeric material, it is possible to reduce the generation of bubbles during the preparation of the material to increase the usable area of the material, and at the same time, it is also possible to improve the photoreceptor sensitivity to a certain extent, to increase the read/write speed of the material and to analyze the causes of the phenomenon using the first nature principle calculations.
This paper analyzed the effective use time of Phenanthraquinone-doped polymethylmethacrylate(PQ/PMMA) photopolymer, the effective use time here and below refers to the number of days in which there is no significant change in the reproduction data page and Bit Error Rate(BER) when the material is recorded and read on the day it is made compared to when it is recorded and read after a period of time, we tentatively analyzed that PQ/PMMA underwent a short baking polymerization stage of 4 hours at 60°C, its effective use time can be extended by about 30% compared to the long baking polymerization stage of 10 hours, and the diffraction efficiency is also significantly improved, also dramatically reduces the exposure time required to record information on the material. The observations we illustrate here provide an idea for the preparation of PQ/PMMA materials with high-performance holographic properties and longer effective use time while reducing the time required for thermal polymerization.
Phenanthraquinone-doped polymethylmethacrylate (PQ/PMMA) photopolymer is a promising material for holographic data storage, according to the negligible shrinkage, polarization sensitivity, and easy preparation. In this paper, we investigated the effect of thermal polymerization temperature and time of PQ/PMMA on the collinear holographic data storage system. By designing the baking temperatures 50℃ and 60℃ and baking times 4-20 hours each 2 hours during thermal polymerization. The information page storage and representation results show that under the baking temperature of 50℃ when the baking times were less than 8 hours, the material could not record the data page, and the bit error rate (BER) of the reconstructed data page was increased with the baking time extension. The material baked for 10 hours recorded data with the best results and reconstructed data pages with a minimum BER of 1.5%, when the baking time is 20 hours, the BER of the reconstructed data page was increased by about 12% compared to the baking time of 10 hours. When the baking temperature is 60℃, the data page BER was also increased with the baking time extension except for a very short baking time within 2.5 hours. We analyze the molecular weight of these materials that can be changed by controlling the baking temperature and time of thermal polymerization properly so that grating generation and readout efficiency can be changed. We believe the analysis is useful for the application of PQ/PMMA on collinear holographic data storage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.