This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Furthermore, splitting the detection electronics functions into several units (at least one for the focal plane and proximity electronics, and one for the video processing functions) does not optimise the production costs : specific development efforts must be performed on critical analogue electronics at each equipment level and operations of assembly, integration and tests are duplicated at equipment and subsystem levels.
Alcatel Space Industries has proposed to CNES a new concept of highly integrated detection electronics (SEDHI), and is developing for CNES a breadboard which will allow to confirm its potentialities.
This paper presents the trade-off study which have been performed before selection of this new concept and summarises the main advantages and drawbacks of each possible architecture. The electrical, mechanical and thermal aspects of the SEDHI concept are described, including the basic technologies : ASIC for phase shift of detector clocks, ASIC for video processing, hybrids, microchip module... The adaptability to a large amount of missions and optical instruments is also discussed.
Thus, for the needs of PEGASE mission – a possible DARWIN in flight demonstration- SAGEIS-CSO has been asked by CNES to design a fine longitudinal sensor able to work at 120 K while performing displacement measurements at a working distance range of 25 to 250 m. Its required performances are a resolution and a precision of 25 nm.
This activity succeeds to the MOUSE II system development, which has demonstrated the ability to obtain the required laser metrology using a frequency stabilised laser, a compact and totally passive Michelson type sensor head plus a detection unit for data processing. Optical signals are routed using fibres, allowing the sensor head to be alone in a cryogenic environment.
Now, the goal is to obtain a validated prototype at a MQ level by the end of 2007.
For that, the laser source will be an update of the flight models made for IASI, using a more powerful DFB diode, pin-to-pin compatible with the previous design, and then giving minor changes. The current regulation was optimized in order not to degrade the narrow diode spectral width.
The opto-thermo-mechanical design of the sensor head, in collaboration with AAS, is also under progress, and constitutes the major evolution of the MOUSE II.
Extensive development has been also performed to design, size, manufacture and test a very light weight reflector shell made as a single part. This 1 meter reflective shell has an areal density of less than 10 Kg/m2 has been manufactured with its surface grounded to the bi parabolic shape. Such challenging areal density has requested a very thin skin associated with a ribs thickness of less than 2mm. In order to demonstrate the high stability and strength of Cesic© the reflector has been tested successfully under very aggressive environment up to 350°C and also an acoustic test with flight representative levels was successfully performed. To produce future very lightweight space mirrors ECM develop with the support of Thales-Alenia-Space since some years an improved version of Cesic© ceramic, called HB-Cesic©. HB-Cesic© made by ECM is developed for its higher intrinsic properties, Young modulus, strength and especially its direct polishing capabilities down to 3 nm micro-roughness. One of the major targets for this development was also to overcome size limitations of the C/C raw material of currently around 1x1 m to produce mirror up to 3,5 m diameter out of a single C/C raw material block.
Under ESA study a 600 mm mirror with a surface density of only 18 Kg/m2 has been designed, sized and manufactured and is currently under polishing at SESO. The polishing to a micro-roughness of far less than 20 nm RMS without expensive overcoatings has been already validated on mirrors up to 800 mm. This 600 mm mirror will be polished to a WFE of less than 20 nm, and afterwards the mirror will be tested under cryogenic environment to measure the WFE evolution between ambient and cryo. The mirror is equipped with a system for focus and astigmatism modification. During the cryo test this system will be activated at cryo temperature to also demonstrate the function of this system. This correction system is developed for future large mirrors for interferometric nulling or aperture synthesis missions like the Darwin mission . For such missions very large and very lightweight mirrors up to 3,5 m diameter with an areal density of less than 25 Kg/m2 are required and thank to the HBCesic© technology such performance is now feasible.
In order to qualify beam and beams end fittings for future large and thermo-elastical stable truss structure for space telescope, full development and tests activities have been performed. Manufacturing process has been optimized in order to obtain a very high reliable strength.
Full scale beams with thin wall have been manufactured and tested in bending and in tension. Full scale beam assembly with integrated junctions have been manufactured and tested up to ultimate loads and have been space qualified.
Beams end fittings made also in Si3N4 and its direct bolting capabilities have been also space qualified by tests.
Beside this qualification for current space telescope, developments are continuing thank to CNES R&T to develop high loaded brazed junction between Si3N4 parts, enhanced thermal conductivity and mechanical strength through Si3N4 formulation and manufacturing process tuning.
View contact details
No SPIE Account? Create one