We report progress on Project Prime (PRecision Interferometry with MIRC for Exoplanets) to detect exoplanets using precision closures using MIRC-X and MYSTIC at CHARA. Our investigations include modeling systematics caused by OPD drifts, differential dispersion, beamtrain birefringence, and flatfielding errors. Injection tests suggest we can recover hot Jupiter companions as faint at 1/5000 of the host star brightness with 4 nights of observing and we will present some results of our recent searches for the hot Jupiters. Our upper limits are starting to constrain current-generation Global Circulation Models (GCMs). We propose the addition of modest nulling (10:1) to today’s interferometers in order to vastly increase the ease of this work and to open up many more targets for detections.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 μm with the goal of extending it to 0.35-2.4 μm with the addition of an U arm to the BV spectrograph and a separate K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Modularity and fibre-feeding allows ANDES to be placed partly on the ELT Nasmyth platform and partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of almost 300 scientists and engineers which include the majority of the scientific and technical expertise in the field that can be found in ESO member states.
The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of ∼100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 µm with the goal of extending it to 0.35-2.4 µm with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coudé room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
In this thesis work, we exploit the unique capabilities of long baseline interferometry to fill two gaps in exoplanet parameter space: 1) the discovery of new planets around stars more massive than the Sun (Project ARMADA), and 2) the characterization of known planets that are extremely close to their host star (Project PRIME). Current detection methods struggle to find exoplanets around hot (A/B-type) stars. We are pushing the astrometric limits of ground-based optical interferometers to carry out a survey of sub-arcsecond A/B-type binary systems with ARMADA. We are achieving astrometric precision at the few tens of micro-arcsecond level in short observations at CHARA/MIRC-X and VLTI/GRAVITY. This incredible precision allows us to probe the au-regime for giant planets orbiting individual stars of the binary system. We present the status of our survey, including our newly implemented etalon wavelength calibration method at CHARA, detection of new stellar mass companions, and non-detection limits down to a few Jupiter masses in some cases. With Project PRIME, we show that ground-based optical interferometry can be used to measure the orbit-dependent spectra of close-in “hot Jupiter”-type exoplanets with precision closure phases. Detecting the infrared spectra of such planets allows us to place useful constraints on atmosphere circulation models. We perform injection tests with MIRC-X and MYSTIC at CHARA for the hot Jupiter exoplanet Ups And b to show that we are reaching down to a contrast of 2e-4. The promise of both these methods demonstrate that optical interferometers are a valuable tool for probing unique regimes of exoplanet science.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.