With the adoption of extreme ultraviolet (EUV) lithography for high-volume production of advanced nodes, stochastic variability and resulting failures, both post litho and post etch, have drawn increasing attention. There is a strong need for accurate models for stochastic edge placement error (SEPE) with a direct link to the induced stochastic failure probability (FP). Additionally, to prevent stochastic failure from occurring on wafers, a holistic stochastic-aware computational lithography suite of products is needed, such as stochastic-aware mask source optimization (SMO), stochastic-aware optical proximity correction (OPC), stochastic-aware lithography manufacturability check (LMC), and stochastic-aware process optimization and characterization. In this paper, we will present a framework to model both SEPE and FP. This approach allows us to study the correlation between SEPE and FP systematically and paves the way to directly correlate SEPE and FP. Additionally, this paper will demonstrate that such a stochastic model can be used to optimize source and mask to significantly reduce SEPE, minimize FP, and improve stochastic-aware process window. The paper will also propose a flow to integrate the stochastic model in OPC to enhance the stochastic-aware process window and EUV manufacturability.
This paper demonstrates a full-chip OPC correction flow based on deep-learning etch model in a DUV litho-etch case. The flow leverages SEM metrology (eP5 fast E-beam tool, ASML-HMI) to collect massive data, automated metrology software (MXP, ASML-Brion) to extract high quality gauges, and deep-learning etch modeling (Newron etch, ASML-Brion) to capture complicated etch behaviors. The model calibration and verification are performed using a combined data from a test and real chip wafer to ensure sufficient pattern coverage. The model performance of Newron etch is benchmarked against a term-based etch model, wherein Newron etch model shows significant accuracy improvement in the model calibration (<50% for test patterns and <35% for real chip pattern). The Newron etch model is proven stable with a comparable performance in the model verification. Particularly, strong loading effects from underlying sublayer are observed in the full chip wafer, and effectively captured by the Newron etch with a sublayer-aware model form. The calibrated Newron etch model is successfully applied in a model-based etch OPC tape-out with new mask design rules but the same litho-etch process conditions. Compared to the term-based model, Newron etch also shows significant accuracy improvement.
The semiconductor design node shrinking requires tighter edge placement errors (EPE) budget. OPC error, as one major contributor of EPE budget, need to be reduced with better OPC model accuracy. In addition, the CD (Critical Dimension) shrinkage in advanced node heavily relies on the etch process. Therefore AEI (After Etch Inspection) metrology and modeling are important to provide accurate pattern correction and optimization. For nodes under 14nm, the etch bias (i.e. the bias between ADI (After Development Inspection) CD and AEI CD) could be -10 nm ~ -50 nm, with a strong loading and aspect-ratio dependency. Etch behavior in advanced node is very complicated and brings challenges to conventional rule based OPC correction. Therefore, accurate etch modeling becomes more and more important to make precise prediction of final complex shapes on wafer for OPC correction. In order to ensure the accuracy of etch modeling, high quality metrology is necessary to reduce random error and systematic measurement error. Moreover, CD gauges alone are not sufficient to capture all the effects of the etch process on different patterns. Edge placement (EP) gauges that accurately describe the contour shapes at various key positions are needed. In this work we used the AEI SEM images obtained from traditional CD-SEM flow, processed with ASML’s MXP (Metrology for eXtreme Performance) tool, and used the extracted CD gauges and massive EP gauges to train a deeplearning Newron Etch model. In the approach, MXP reduced the AEI metrology random errors and shape fitting measurement error and provides better pattern coverage with massive reliable CD and EP gauges, Newron Etch captures complex and unknown physical and chemical effects learned from wafer data. Results shows that MXP successfully extracted stable contour from AEI SEM for various pattern types. Three etch models are calibrated and compared: CD based EEB model (Effective Etch Bias), CD+EP based EEB model, and CD+EP based Newron etch model. CD based EEB model captures the major trend of the etch process. Including EP gauges helps EEB model with about 10% RMS reduction on prediction. Integration of MXP (CD+EP) and Newron Etch model gains about 45% prediction RMS reduction compared to baseline model. The good prediction of Newron Etch is also verified from wafer SEM overlay on complex-shape patterns. This result validates the effectiveness of ASML’s solution of deep learning etch model integration with MXP AEI’s massive wafer data extraction from etch process, and will help to provide accurate and reliable etch modeling for advanced node etch OPC correction in semiconductor manufacturing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.