This will count as one of your downloads.
You will have access to both the presentation and article (if available).
State-recycling and time-resolved imaging in topological photonic lattices (Conference Presentation)
The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding.
We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.
We describe the optimisation of the laser inscription process parameters enhancing grating performances via the combination of spectrally resolved grating transmission measurements and theoretical analysis models. The first order diffraction efficiency of the gratings was measured at mid-infrared wavelengths (3-5 μm), and found to exceed 60% at the Littrow blaze wavelength, compared to a substrate external transmittance of 67%. This impressive result implies the diffraction efficiency should exceed 90% for a grating substrate treated with an anti-reflection coating. There is excellent agreement between the modelled grating efficiency and the measured data, and from a least squares fit to the measured data the refractive index modulation achieved during the inscription process is inferred. These encouraging initial results demonstrate that ultrafast laser inscription of chalcogenide glass may provide a potential new and alternative technology for the manufacture of astronomical diffraction gratings for use at near-infrared and mid-infrared wavelengths.
View contact details
No SPIE Account? Create one