Once the structure was verified and accepted, anodizing was performed. An interesting aspect of this process is that we were able to measure the dimensional difference, as well as the repeatability of the assembly process, before and after anodizing. Finally, the dimensional acceptance reports of the DDRAGO instrument structure are shown and a series of guidelines for the manufacture, assembly, integration, and validation for mechanical structures in astronomical instrumentation are proposed.
At present, new approaches for the use of drones in high-precision optical applications are rising, especially with those known as multirotor. However, the optical turbulence effects generated by multirotor drones are not entirely understood. These optical effects can reduce the performance of the optical instruments that they transport. We present measurements of the wavefront deformation generated by the temperature fluctuations and the airflow of a drone’s propulsion system. To do so, we used a single arm of a DJI S800 EVO Hexacopter (professional drone) and measured its operating temperature with a commercial infrared camera. The resulting temperature variation, between a switched-off propulsion system at room temperature and one running at its maximum performance, was 34.2°C. Later, we performed two different interferometric tests: Takeda’s method and the phase-shifting technique, using a ZYGO interferometer. These tests show that the total deformation over an incident wavefront to the propeller airflow is lower than 0.074 λ PV and 0.007 λ RMS (HeNe laser, λ = 633 nm). We determine that the optical turbulence produced by a drone propulsion system is negligible.
FRIDA IFU is conformed mainly by 2 mirror blocks with 30 spherical mirrors each. The image slicing is performed by a block of 30 cylindrical mirrors each of 400 μm width. It also has a Schwarzschild relay based on two off axis spherical mirrors that adapts the GTCAO corrected PSF to the slicer mirrors dimensions. To readapt the sliced PSF to the spectrograph input numerical aperture the IFU has an afocal system of two parabolic off axis mirrors. The AO PSF is bigger than the slice mirror dimensions and this produces diffraction effects. These diffraction effects combined with the intrinsic IFU and spectrograph aberrations produce the final instrumental PSF of the IFS mode.
In order to evaluate the instrumental PSF quality of the FRIDA IFS, modeling simulations were performed by the ZEMAX Physical Optics Propagation (POP) module. In this work the simulations are described and the PSF quality and uniformity on a reconstructed IFS image is evaluated. It is shown the PSF quality of the IFS mode including the instrument manufacturing tolerances fulfills the specifications.
View contact details