This will count as one of your downloads.
You will have access to both the presentation and article (if available).
AO functionalities improvements with the adaptive secondary mirrors at the Large Binocular Telescope
The Deformable Mirror Simulator (DMS) is an optical device reproducing the F/13 beam from the adaptive secondary mirror of the Very Large Telescope UT4. The system has been designed and integrated as a test tool for the calibration and functional verification of the WaveFront sensor module of the ERIS instrument (or ERIS-AO). To this purpose the DSMSim includes a high order deformable mirror and two sources to mimic the laser and natural asterisms and illuminate the WFS optics.
In this paper we report the design of the DSMSim, the integration, verification and alignment procedure with the ERIS-AO; in the end we outline a roadmap for future improvements of the system. This work is intended to be a reference for future instrumentation projects (e.g. MAVIS-AO) for the VLT.
Adaptive secondary mirrors performance and reliability improvements at the Large Binocular Telescope
Aim of this paper is to present the latest developments on the main issues related to the fabrication of a breadboard, covering two project critical areas identified during the preliminary studies: the design and performances of the long-stroke actuators used to implement the mirror active control and the mirror survivability to launch via Electrostatic Locking (EL) between mirror and backplane. The described work is developed under the ESA/ESTEC contract No. 22321/09/NL/RA.
The lightweight mirror is structured as a central sector surrounded by petals, all of them actively controlled to reach the specified shape after initial deployment and then maintained within specs for the entire mission duration. The presented study concerns: a) testing the Carbon Fiber Reinforced Plastic (CFRP) backplane manufacturing and EL techniques, with production of suitable specimens; b) actuator design optimisation; c) design of the deployment mechanism including a high precision latch; d) the fabrication of thin mirrors mock-ups to validate the fabrication procedure for the large shells.
The current activity aims to the construction of an optical breadboard capable of demonstrating the achievement of all these coupled critical aspects: optical quality of the thin shell mirror surface, actuators performances and back-plane - EL subsystem functionality.
1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch.
The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented.
The unit has entered the final design and construction phase in July 2015, after an advanced preliminary design. The final design review is planned for fall 2017; thereafter, the unit will enter the construction and test phase. Acceptance in Europe after full optical calibration is planned for 2022, while the delivery to Cerro Armazones will occur in 2023.
Even if the fundamental concept has remained unchanged with respect to the other contactless large deformable mirrors, the specific requirements of the E-ELT unit posed new design challenges that required very peculiar solutions. Therefore, a significant part of the design phase has been focused on the validation of the new aspects, based on analysis, numerical simulations and experimental tests. Several experimental tests have been executed on the Demonstration Prototype, which is the 222 actuators prototype developed in the frame of the advanced preliminary design. We present the main project phases, the current design status and the most relevant results achieved by the validation tests.
We present in the following the MICADO-MAORY SCAO specifications, the current SCAO prototyping activities at LESIA for E-ELT scale pyramid wavefront sensor (WFS) and real-time computer (RTC), our activities on end-to-end AO simulations and the current preliminary design of SCAO subsystems. We finish by presenting the implementation and current design studies for the high-contrast imaging mode of MICADO, which will make use of the SCAO correction offered to the instrument.
The deformable secondary mirror of VLT: final electro-mechanical and optical acceptance test results
View contact details
No SPIE Account? Create one