An innovative metrology technique has been devised to address current limitations of optical critical dimension (OCD) in advanced semiconductor metrology. This technique is based on multiple self-interferometric pupil imaging, called Mueller matrix self-interferometric pupil ellipsometry (M-SIPE). The system integrates an innovatively designed interference generator in both illuminating and imaging optics, allowing for the massive acquisition of full polarization information across entire angles around the device. The vast amount of information can offer fully comprehensive structural analysis, accomplishing enhanced sensitivity and the ability to break the well-known parameter correlation issues. The system employs a single-shot holographic measurement technique on the pupil plane, enabling rapid acquisition of three-dimensional spectral information, such as wavelengths, incidence angles, and azimuth angles. Thus, unlike conventional OCD tools, M-SIPE can obtain multi-angular and full polarization information without any mechanical movements. We verified the performance of M-SIPE by the experiment of non-patterned wafers of various conditions using an optical testbed. Our results confirmed good agreement between the experiment and theoretical simulations across all angular ranges. Furthermore, the actual device simulation was conducted to show sensitivity enhancement and ability for breaking the parameter correlation issues. The results confirmed that the large amount of angular information from M-SIPE technique could overcome current metrological challenges.
Background: High-throughput three-dimensional metrology techniques for monitoring in-wafer uniformity (IWU) and in-cell uniformity (ICU) are critical for enhancing the yield of modern semiconductor manufacturing processes. However, owing to physical limitations, current metrology methods are not capable of enabling such measurements. For example, the optical critical dimension technique is not suitable for ICU measurement, because of its large spot size. In addition, it is excessively slow for IWU measurement.
Aim: To overcome the aforementioned limitation, we demonstrate a line-scan hyperspectral imaging (LHSI) system, which combines spectroscopy and imaging techniques to provide sufficient information for spectral and spatial resolution, as well as high throughput.
Approach: The proposed LHSI system has a 5-μm spatial resolution together with 0.25-nm spectral resolution in the broad-wavelength region covering 350 to 1100 nm.
Results: The system enables the simultaneous collection of massive amounts of spectral and spatial information with an extremely large field of view of 13 × 0.6 mm2. Additionally, throughput improvement by a factor of 103 to 104 can be achieved when compared with standard ellipsometry and reflectometry tools.
Conclusions: Owing to its high throughput and high spatial and spectral resolutions, the proposed LHSI system has considerable potential to be adopted for high-throughput ICU and IWU measurements of various semiconductor devices used in high-volume manufacturing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.